以生存为条件的死亡马尔可夫过程路径的随机逼近

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
Oliver Tough
{"title":"以生存为条件的死亡马尔可夫过程路径的随机逼近","authors":"Oliver Tough","doi":"10.1214/22-ecp475","DOIUrl":null,"url":null,"abstract":"Reinforced processes are known to provide a stochastic representation for the quasi-stationary distribution of a given killed Markov process – describing the killed Markov process at fixed time instants. In this paper we shall adapt the construction to provide a pathwise description. We also obtain a stochastic approximation for the quasi-limiting distributions of reducible killed Markov processes as a corollary.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic approximation of the paths of killed Markov processes conditioned on survival\",\"authors\":\"Oliver Tough\",\"doi\":\"10.1214/22-ecp475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforced processes are known to provide a stochastic representation for the quasi-stationary distribution of a given killed Markov process – describing the killed Markov process at fixed time instants. In this paper we shall adapt the construction to provide a pathwise description. We also obtain a stochastic approximation for the quasi-limiting distributions of reducible killed Markov processes as a corollary.\",\"PeriodicalId\":50543,\"journal\":{\"name\":\"Electronic Communications in Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Communications in Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-ecp475\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ecp475","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,强化过程为给定的杀死的马尔可夫过程的准平稳分布提供了随机表示——描述了固定时刻的杀死的马尔科夫过程。在本文中,我们将调整结构以提供路径描述。作为推论,我们还得到了可约死马尔可夫过程的拟极限分布的随机近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic approximation of the paths of killed Markov processes conditioned on survival
Reinforced processes are known to provide a stochastic representation for the quasi-stationary distribution of a given killed Markov process – describing the killed Markov process at fixed time instants. In this paper we shall adapt the construction to provide a pathwise description. We also obtain a stochastic approximation for the quasi-limiting distributions of reducible killed Markov processes as a corollary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Communications in Probability
Electronic Communications in Probability 工程技术-统计学与概率论
CiteScore
1.00
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信