对数凸密度$f$与$(\Log f)'$有界的线上的双气泡

IF 0.4 Q4 MATHEMATICS
Nat Sothanaphan
{"title":"对数凸密度$f$与$(\\Log f)'$有界的线上的双气泡","authors":"Nat Sothanaphan","doi":"10.35834/mjms/1544151693","DOIUrl":null,"url":null,"abstract":"We extend results of Bongiovanni et al. on double bubbles on the line with log-convex density to the case where the derivative of the log of the density is bounded. We show that the tie function between the double interval and the triple interval still exists but may blow up to infinity in finite time. For the first time, a density is presented for which the blowup time is positive and finite.","PeriodicalId":42784,"journal":{"name":"Missouri Journal of Mathematical Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Double Bubbles on the Line with Log-Convex Density $f$ with $(\\\\log f)'$ Bounded\",\"authors\":\"Nat Sothanaphan\",\"doi\":\"10.35834/mjms/1544151693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend results of Bongiovanni et al. on double bubbles on the line with log-convex density to the case where the derivative of the log of the density is bounded. We show that the tie function between the double interval and the triple interval still exists but may blow up to infinity in finite time. For the first time, a density is presented for which the blowup time is positive and finite.\",\"PeriodicalId\":42784,\"journal\":{\"name\":\"Missouri Journal of Mathematical Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Missouri Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35834/mjms/1544151693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Missouri Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35834/mjms/1544151693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

我们将Bongiovanni等人关于对数凸密度线上的双气泡的结果推广到密度的对数导数有界的情况。我们证明了二重区间和三重区间之间的联系函数仍然存在,但可能在有限时间内爆炸到无穷大。第一次,提出了一个密度,其爆破时间是正的和有限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Double Bubbles on the Line with Log-Convex Density $f$ with $(\log f)'$ Bounded
We extend results of Bongiovanni et al. on double bubbles on the line with log-convex density to the case where the derivative of the log of the density is bounded. We show that the tie function between the double interval and the triple interval still exists but may blow up to infinity in finite time. For the first time, a density is presented for which the blowup time is positive and finite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
9
期刊介绍: Missouri Journal of Mathematical Sciences (MJMS) publishes well-motivated original research articles as well as expository and survey articles of exceptional quality in mathematical sciences. A section of the MJMS is also devoted to interesting mathematical problems and solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信