{"title":"镍基高温合金定向结晶性能的预测","authors":"O. Glotka, V. Olshanetskii","doi":"10.15407/mom2021.03.015","DOIUrl":null,"url":null,"abstract":"The aim of this work is to obtain predictive regression models, with which it is possible to adequately calculate the mechanical properties of heat-resistant nickel alloys, without prior experiments. Industrial alloys of directional crystallization of domestic and foreign production were selected for research. The values were processed by the method of least squares to obtain correlations with the receipt of mathematical equations of regression models that optimally describe these dependencies. As a result of processing of experimental data, the ratio of alloying elements which can be used for an estimation of mechanical properties taking into account complex influence of the main components of an alloy is offered for the first time. Since the dimensional mismatch of the lattice parameters is associated with the degree of concentration of solid-soluble hardening of γ- and γ'-phases, the efficiency of dispersion hardening of the alloy, creep rate and other properties, the obtained ratio allows to link these properties with multicomponent systems. Regression models are presented, with the help of which it is possible to calculate dimensional mismatch, strength, heat resistance, number of phases and density of alloys with high accuracy. The regularities of the composition influence on the properties of heat-resistant nickel alloys of directional crystallization are established. It is shown that for multicomponent nickel systems it is possible to predict with high probability misfit, which significantly affects the strength characteristics of alloys of this class. The decrease in the value of misfit is accompanied by an increase in the solubility of the elements in the -solid solution at a value of the ratio of alloying elements of 1.5 - 1.6. However, an increase in the ratio of alloying elements greater than 2 is accompanied by an increase in misfit, because the -solid solution has reached a maximum of dissolution. The perspective and effective direction in the decision of a problem of forecasting of the basic characteristics influencing a complex of service properties of alloys both at development of new heat-resistant nickel alloys, and at perfection of structures of known industrial marks of this class is shown. Keywords: nickel-based superalloys, dimensional mismatch (γ / γ'- mismatch), strength, heat resistance.","PeriodicalId":33600,"journal":{"name":"Metaloznavstvo ta obrobka metaliv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the properties of nickel-based superalloys directional crystallization\",\"authors\":\"O. Glotka, V. Olshanetskii\",\"doi\":\"10.15407/mom2021.03.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is to obtain predictive regression models, with which it is possible to adequately calculate the mechanical properties of heat-resistant nickel alloys, without prior experiments. Industrial alloys of directional crystallization of domestic and foreign production were selected for research. The values were processed by the method of least squares to obtain correlations with the receipt of mathematical equations of regression models that optimally describe these dependencies. As a result of processing of experimental data, the ratio of alloying elements which can be used for an estimation of mechanical properties taking into account complex influence of the main components of an alloy is offered for the first time. Since the dimensional mismatch of the lattice parameters is associated with the degree of concentration of solid-soluble hardening of γ- and γ'-phases, the efficiency of dispersion hardening of the alloy, creep rate and other properties, the obtained ratio allows to link these properties with multicomponent systems. Regression models are presented, with the help of which it is possible to calculate dimensional mismatch, strength, heat resistance, number of phases and density of alloys with high accuracy. The regularities of the composition influence on the properties of heat-resistant nickel alloys of directional crystallization are established. It is shown that for multicomponent nickel systems it is possible to predict with high probability misfit, which significantly affects the strength characteristics of alloys of this class. The decrease in the value of misfit is accompanied by an increase in the solubility of the elements in the -solid solution at a value of the ratio of alloying elements of 1.5 - 1.6. However, an increase in the ratio of alloying elements greater than 2 is accompanied by an increase in misfit, because the -solid solution has reached a maximum of dissolution. The perspective and effective direction in the decision of a problem of forecasting of the basic characteristics influencing a complex of service properties of alloys both at development of new heat-resistant nickel alloys, and at perfection of structures of known industrial marks of this class is shown. Keywords: nickel-based superalloys, dimensional mismatch (γ / γ'- mismatch), strength, heat resistance.\",\"PeriodicalId\":33600,\"journal\":{\"name\":\"Metaloznavstvo ta obrobka metaliv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metaloznavstvo ta obrobka metaliv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/mom2021.03.015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metaloznavstvo ta obrobka metaliv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/mom2021.03.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting the properties of nickel-based superalloys directional crystallization
The aim of this work is to obtain predictive regression models, with which it is possible to adequately calculate the mechanical properties of heat-resistant nickel alloys, without prior experiments. Industrial alloys of directional crystallization of domestic and foreign production were selected for research. The values were processed by the method of least squares to obtain correlations with the receipt of mathematical equations of regression models that optimally describe these dependencies. As a result of processing of experimental data, the ratio of alloying elements which can be used for an estimation of mechanical properties taking into account complex influence of the main components of an alloy is offered for the first time. Since the dimensional mismatch of the lattice parameters is associated with the degree of concentration of solid-soluble hardening of γ- and γ'-phases, the efficiency of dispersion hardening of the alloy, creep rate and other properties, the obtained ratio allows to link these properties with multicomponent systems. Regression models are presented, with the help of which it is possible to calculate dimensional mismatch, strength, heat resistance, number of phases and density of alloys with high accuracy. The regularities of the composition influence on the properties of heat-resistant nickel alloys of directional crystallization are established. It is shown that for multicomponent nickel systems it is possible to predict with high probability misfit, which significantly affects the strength characteristics of alloys of this class. The decrease in the value of misfit is accompanied by an increase in the solubility of the elements in the -solid solution at a value of the ratio of alloying elements of 1.5 - 1.6. However, an increase in the ratio of alloying elements greater than 2 is accompanied by an increase in misfit, because the -solid solution has reached a maximum of dissolution. The perspective and effective direction in the decision of a problem of forecasting of the basic characteristics influencing a complex of service properties of alloys both at development of new heat-resistant nickel alloys, and at perfection of structures of known industrial marks of this class is shown. Keywords: nickel-based superalloys, dimensional mismatch (γ / γ'- mismatch), strength, heat resistance.