嵌入式应用的功率和能耗模型

IF 0.9 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Momcilo Krunic
{"title":"嵌入式应用的功率和能耗模型","authors":"Momcilo Krunic","doi":"10.5755/j02.eie.31345","DOIUrl":null,"url":null,"abstract":"This paper describes a study on the power and energy consumption estimation models that have been defined to facilitate the development of ultra-low power embedded applications. During the study, various measurements have been carried out on the instruction and application level to challenge the models against empirical data. The study has been performed on the multicore heterogeneous hardware platform developed for ultra-low power Digital Signal Processors (DSP) applications. The final goal was to develop a tool that can provide insight into power dissipation during the execution of embedded applications, so that one can refactor the source code in an energy-efficient manner, or ideally to develop an energy-aware C compiler. The side effect of the research presents interesting insight into how the custom hardware architecture influences power dissipation. The selected platform has been chosen simply because it represents R&D state of the art ultra-low power hardware used in hearing aids. The presented solution has been developed and tested in an Eclipse environment using Java programming language.","PeriodicalId":51031,"journal":{"name":"Elektronika Ir Elektrotechnika","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power and Energy Consumption Models for Embedded Applications\",\"authors\":\"Momcilo Krunic\",\"doi\":\"10.5755/j02.eie.31345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a study on the power and energy consumption estimation models that have been defined to facilitate the development of ultra-low power embedded applications. During the study, various measurements have been carried out on the instruction and application level to challenge the models against empirical data. The study has been performed on the multicore heterogeneous hardware platform developed for ultra-low power Digital Signal Processors (DSP) applications. The final goal was to develop a tool that can provide insight into power dissipation during the execution of embedded applications, so that one can refactor the source code in an energy-efficient manner, or ideally to develop an energy-aware C compiler. The side effect of the research presents interesting insight into how the custom hardware architecture influences power dissipation. The selected platform has been chosen simply because it represents R&D state of the art ultra-low power hardware used in hearing aids. The presented solution has been developed and tested in an Eclipse environment using Java programming language.\",\"PeriodicalId\":51031,\"journal\":{\"name\":\"Elektronika Ir Elektrotechnika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elektronika Ir Elektrotechnika\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.eie.31345\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektronika Ir Elektrotechnika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.eie.31345","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了对功耗和能耗估计模型的研究,这些模型已被定义为促进超低功耗嵌入式应用程序的开发。在研究过程中,在教学和应用层面进行了各种测量,以根据经验数据挑战模型。该研究是在为超低功耗数字信号处理器(DSP)应用开发的多核异构硬件平台上进行的。最终目标是开发一种工具,可以深入了解嵌入式应用程序执行过程中的功耗,这样就可以以节能的方式重构源代码,或者理想情况下开发一个节能的C编译器。该研究的副作用为定制硬件架构如何影响功耗提供了有趣的见解。之所以选择所选平台,只是因为它代表了助听器中使用的最先进的超低功耗硬件的研发状态。所提出的解决方案已经使用Java编程语言在Eclipse环境中进行了开发和测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power and Energy Consumption Models for Embedded Applications
This paper describes a study on the power and energy consumption estimation models that have been defined to facilitate the development of ultra-low power embedded applications. During the study, various measurements have been carried out on the instruction and application level to challenge the models against empirical data. The study has been performed on the multicore heterogeneous hardware platform developed for ultra-low power Digital Signal Processors (DSP) applications. The final goal was to develop a tool that can provide insight into power dissipation during the execution of embedded applications, so that one can refactor the source code in an energy-efficient manner, or ideally to develop an energy-aware C compiler. The side effect of the research presents interesting insight into how the custom hardware architecture influences power dissipation. The selected platform has been chosen simply because it represents R&D state of the art ultra-low power hardware used in hearing aids. The presented solution has been developed and tested in an Eclipse environment using Java programming language.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Elektronika Ir Elektrotechnika
Elektronika Ir Elektrotechnika 工程技术-工程:电子与电气
CiteScore
2.40
自引率
7.70%
发文量
44
审稿时长
24 months
期刊介绍: The journal aims to attract original research papers on featuring practical developments in the field of electronics and electrical engineering. The journal seeks to publish research progress in the field of electronics and electrical engineering with an emphasis on the applied rather than the theoretical in as much detail as possible. The journal publishes regular papers dealing with the following areas, but not limited to: Electronics; Electronic Measurements; Signal Technology; Microelectronics; High Frequency Technology, Microwaves. Electrical Engineering; Renewable Energy; Automation, Robotics; Telecommunications Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信