{"title":"上Detour单调支配数的特征","authors":"M. A. Khayyoom","doi":"10.4067/s0719-06462020000300315","DOIUrl":null,"url":null,"abstract":"This paper introduces the concept of upper detour monophonic domination number of a graph. For a connected graph G with vertex set V ( G ) , a set M ⊆ V ( G ) is called minimal detour monophonic dominating set, if no proper subset of M is a detour monophonic dominating set. The maximum cardinality among all minimal monophonic dominating sets is called upper detour monophonic domination number and is denoted by γ + dm ( G ) . For any two positive integers p and q with 2 ≤ p ≤ q there is a connected graph G with γ m ( G ) = γ dm ( G ) = p and γ + dm ( G ) = q . For any three positive integers p, q, r with 2 < p < q < r , there is a connected graph G with m ( G ) = p , γ dm ( G ) = q and γ + dm ( G ) = r . Let p and q be two positive integers with 2 < p < q such that γ dm ( G ) = p and γ + dm ( G ) = q . Then there is a minimal DMD set whose cardinality lies between p and q . Let p, q and r be any three positive integers with 2 ≤ p ≤ q ≤ r . Then, there exist a connected graph G such that γ dm ( G ) = p, γ + dm ( G ) = q and | V ( G ) | = r . γ + dm ( G ) = q . Entonces existe un conjunto DMD mínimo cuya cardinalidad se encuentra entre p y q . Sean p, q y r tres enteros positivos cualquiera con 2 ≤ p ≤ q ≤ r . Entonces existe un grafo conexo G tal que γ dm ( G ) = p, γ + dm ( G ) = q y | V ( G ) | = r .","PeriodicalId":36416,"journal":{"name":"Cubo","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Upper Detour Monophonic Domination Number\",\"authors\":\"M. A. Khayyoom\",\"doi\":\"10.4067/s0719-06462020000300315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the concept of upper detour monophonic domination number of a graph. For a connected graph G with vertex set V ( G ) , a set M ⊆ V ( G ) is called minimal detour monophonic dominating set, if no proper subset of M is a detour monophonic dominating set. The maximum cardinality among all minimal monophonic dominating sets is called upper detour monophonic domination number and is denoted by γ + dm ( G ) . For any two positive integers p and q with 2 ≤ p ≤ q there is a connected graph G with γ m ( G ) = γ dm ( G ) = p and γ + dm ( G ) = q . For any three positive integers p, q, r with 2 < p < q < r , there is a connected graph G with m ( G ) = p , γ dm ( G ) = q and γ + dm ( G ) = r . Let p and q be two positive integers with 2 < p < q such that γ dm ( G ) = p and γ + dm ( G ) = q . Then there is a minimal DMD set whose cardinality lies between p and q . Let p, q and r be any three positive integers with 2 ≤ p ≤ q ≤ r . Then, there exist a connected graph G such that γ dm ( G ) = p, γ + dm ( G ) = q and | V ( G ) | = r . γ + dm ( G ) = q . Entonces existe un conjunto DMD mínimo cuya cardinalidad se encuentra entre p y q . Sean p, q y r tres enteros positivos cualquiera con 2 ≤ p ≤ q ≤ r . Entonces existe un grafo conexo G tal que γ dm ( G ) = p, γ + dm ( G ) = q y | V ( G ) | = r .\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4067/s0719-06462020000300315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/s0719-06462020000300315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文引入了图上绕行单音支配数的概念。对于具有顶点集V (G)的连通图G,若M的任何固有子集不为绕行单音控制集,则称集合M≥≥迂回单音控制集。所有最小单音支配集的最大基数称为上绕路单音支配数,用γ + dm (G)表示。对于任意两个正整数p和q,且2≤p≤q,存在一个连通图G,其中γ m (G) = γ dm (G) = p且γ + dm (G) = q。对于任意三个正整数p, q, r且2 < p < q < r,存在m (G) = p, γ dm (G) = q且γ + dm (G) = r的连通图G。设p和q为2 < p < q的正整数,使γ dm (G) = p和γ + dm (G) = q。那么存在一个最小的DMD集合,其基数介于p和q之间。设p、q、r为任意三个正整数,且2≤p≤q≤r。则存在一个连通图G,使得γ dm (G) = p, γ + dm (G) = q, | V (G) | = r。γ + dm (G) = q。与DMD相关的参数存在mínimo cuya cardinalidad se encuentra entre p . q。Sean p, q y r为正数,假设2≤p≤q≤r。在γ + dm (G) = p, γ + dm (G) = q y | V (G) | = r的情况下,存在凸点。
Characterization of Upper Detour Monophonic Domination Number
This paper introduces the concept of upper detour monophonic domination number of a graph. For a connected graph G with vertex set V ( G ) , a set M ⊆ V ( G ) is called minimal detour monophonic dominating set, if no proper subset of M is a detour monophonic dominating set. The maximum cardinality among all minimal monophonic dominating sets is called upper detour monophonic domination number and is denoted by γ + dm ( G ) . For any two positive integers p and q with 2 ≤ p ≤ q there is a connected graph G with γ m ( G ) = γ dm ( G ) = p and γ + dm ( G ) = q . For any three positive integers p, q, r with 2 < p < q < r , there is a connected graph G with m ( G ) = p , γ dm ( G ) = q and γ + dm ( G ) = r . Let p and q be two positive integers with 2 < p < q such that γ dm ( G ) = p and γ + dm ( G ) = q . Then there is a minimal DMD set whose cardinality lies between p and q . Let p, q and r be any three positive integers with 2 ≤ p ≤ q ≤ r . Then, there exist a connected graph G such that γ dm ( G ) = p, γ + dm ( G ) = q and | V ( G ) | = r . γ + dm ( G ) = q . Entonces existe un conjunto DMD mínimo cuya cardinalidad se encuentra entre p y q . Sean p, q y r tres enteros positivos cualquiera con 2 ≤ p ≤ q ≤ r . Entonces existe un grafo conexo G tal que γ dm ( G ) = p, γ + dm ( G ) = q y | V ( G ) | = r .