{"title":"苔藓植物最新文献-126(1)","authors":"J. Atwood, W. Buck, J. Brinda","doi":"10.1639/0007-2745-126.1.139","DOIUrl":null,"url":null,"abstract":"Brittonodoxa allinckxiorum and Callicostella colombica new for Brazil.] Perera-Castro, A. V., Á. M. González-Rodrı́guez & B. FernándezMarı́n. 2022. When time is not of the essence: constraints to the carbon balance of bryophytes. Journal of Experimental Botany 73(13): 4562–4575. [doi: 10.1093/jxb/erac104.] Perera-Castro, A. V., M. J. Waterman, S. A. Robinson & J. Flexas. 2022. Limitations to photosynthesis in bryophytes: certainties and uncertainties regarding methodology. Journal of Experimental Botany 73(13): 4592–4604. [doi: 10.1093/jxb/erac189.] Perini, K., P. Castellari, D. Gisotti, A. Giachetta, C. Turcato & E. Roccotiello. 2022. MosSkin: a moss-based lightweight building system. Building and Environment 221: 109283. [doi: 10.1016/j. buildenv.2022.109283; ‘‘A low cost and lightweight moss envelope system for buildings has been developed to address the problem of the lack of greening in densely urbanized areas. Several moss species have been sampled in the wild, selected, based on their ability to tolerate the abiotic stresses of urban environments, cultivated in controlled conditions and tested for their growth capacity on different (building) materials.’’ Incl. Homalothecium sericeum, Barbula unguiculata, Pseudoleskea incurvata, Grimmia pulvinata and Hypnum cupressiforme.] Permin, A., A. B. Horwath, D. B. Metcalfe, A. Priemé & K. Rousk. 2022. High nitrogen-fixing rates associated with groundcovering mosses in a tropical mountain cloud forest will decrease drastically in a future climate. Functional Ecology 36(7): 1772–1781. [doi: 10.1111/1365-2435.14088.] Petrinec, B., D. Babić, T. Meštrović, T. Bogdanović, M. Popijač & D. Rašeta. 2022. Mosses in the Kopački Rit Nature Park, Croatia, as bioindicators of a potential radioactive contamination of the middle Danube River Basin. Scientific Reports 12: 11617 [1–8]. [doi: 10.1038/s41598-022-15716-3.] Pezeshki, S., I. Warmbier, T. Busch, E. Bauerbach, P. Szövényi & M. Petersen. 2022. The first step into phenolic metabolism in the hornwort Anthoceros agrestis: molecular and biochemical characterization of two phenylalanine ammonia-lyase isoforms. Planta 256: 33 [1–11]. [doi: 10.1007/s00425-022-03944-w.] Pfeifer, L., K.-K. Mueller & B. Classen. 2022. The cell wall of hornworts and liverworts: innovations in early land plant evolution? Journal of Experimental Botany 73(13): 4454–4472. [doi: 10.1093/jxb/erac157.] Piatkowski, B. T., K. Imwattana, E. A. Tripp, D. J. Weston, A. L. Healey, J. Schmutz & A. J. Shaw. 2020. Phylogenomics reveals convergent evolution of red-violet coloration in land plants and the origins of the anthocyanin biosynthetic pathway. Molecular Phylogenetics and Evolution 151: 106904. [doi: 10.1016/j. ympev.2020.106904; ‘‘Many early land plants such as mosses, liverworts, and ferns produce flavonoid pigments, but their biosynthetic origins and homologies to the anthocyanin pathway remain uncertain.’’ ‘‘We found that the entire pathway was not intact until the most recent common ancestor of seed plants and that orthologs of many downstream enzymes are absent from seedless plants including mosses, liverworts, and ferns.’’] Pietrykowska, H., I. Sierocka, A. Zielezinski, A. Alisha, J. C. Carrasco-Sánchez, A. Jarmołowski, W. M. Karłowski & Z. Szweykowska-Kulińska. 2022. Biogenesis, conservation, and function of miRNA in liverworts. Journal of Experimental Botany 73(13): 4528–4545. [doi: 10.1093/jxb/erac098.] Pihlaja, K., T. Marsh, R. Juutinen, S. Huttunen, T. Ulvinen, T. Hopkins, T. Kypärä, A. Parnela, K. Syrjänen, E. Ervasti, A.-P. Huhta, O. Vainio, S. Laaka-Lindberg, A. Kestilä, L. Maanpää, T. Kuitunen & E. Hankonen. 2022. New national and regional biological records for Finland 10. Contributions to Bryophyta and Marchantiophyta 9. Memoranda Societatis pro Fauna et Flora Fennica 98: 21–35. [Brachythecium udum, Lewinskya 148 The Bryologist 126(1): 2023","PeriodicalId":55319,"journal":{"name":"Bryologist","volume":"126 1","pages":"139 - 153"},"PeriodicalIF":0.8000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recent literature on bryophytes — 126(1)\",\"authors\":\"J. Atwood, W. Buck, J. Brinda\",\"doi\":\"10.1639/0007-2745-126.1.139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brittonodoxa allinckxiorum and Callicostella colombica new for Brazil.] Perera-Castro, A. V., Á. M. González-Rodrı́guez & B. FernándezMarı́n. 2022. When time is not of the essence: constraints to the carbon balance of bryophytes. Journal of Experimental Botany 73(13): 4562–4575. [doi: 10.1093/jxb/erac104.] Perera-Castro, A. V., M. J. Waterman, S. A. Robinson & J. Flexas. 2022. Limitations to photosynthesis in bryophytes: certainties and uncertainties regarding methodology. Journal of Experimental Botany 73(13): 4592–4604. [doi: 10.1093/jxb/erac189.] Perini, K., P. Castellari, D. Gisotti, A. Giachetta, C. Turcato & E. Roccotiello. 2022. MosSkin: a moss-based lightweight building system. Building and Environment 221: 109283. [doi: 10.1016/j. buildenv.2022.109283; ‘‘A low cost and lightweight moss envelope system for buildings has been developed to address the problem of the lack of greening in densely urbanized areas. Several moss species have been sampled in the wild, selected, based on their ability to tolerate the abiotic stresses of urban environments, cultivated in controlled conditions and tested for their growth capacity on different (building) materials.’’ Incl. Homalothecium sericeum, Barbula unguiculata, Pseudoleskea incurvata, Grimmia pulvinata and Hypnum cupressiforme.] Permin, A., A. B. Horwath, D. B. Metcalfe, A. Priemé & K. Rousk. 2022. High nitrogen-fixing rates associated with groundcovering mosses in a tropical mountain cloud forest will decrease drastically in a future climate. Functional Ecology 36(7): 1772–1781. [doi: 10.1111/1365-2435.14088.] Petrinec, B., D. Babić, T. Meštrović, T. Bogdanović, M. Popijač & D. Rašeta. 2022. Mosses in the Kopački Rit Nature Park, Croatia, as bioindicators of a potential radioactive contamination of the middle Danube River Basin. Scientific Reports 12: 11617 [1–8]. [doi: 10.1038/s41598-022-15716-3.] Pezeshki, S., I. Warmbier, T. Busch, E. Bauerbach, P. Szövényi & M. Petersen. 2022. The first step into phenolic metabolism in the hornwort Anthoceros agrestis: molecular and biochemical characterization of two phenylalanine ammonia-lyase isoforms. Planta 256: 33 [1–11]. [doi: 10.1007/s00425-022-03944-w.] Pfeifer, L., K.-K. Mueller & B. Classen. 2022. The cell wall of hornworts and liverworts: innovations in early land plant evolution? Journal of Experimental Botany 73(13): 4454–4472. [doi: 10.1093/jxb/erac157.] Piatkowski, B. T., K. Imwattana, E. A. Tripp, D. J. Weston, A. L. Healey, J. Schmutz & A. J. Shaw. 2020. Phylogenomics reveals convergent evolution of red-violet coloration in land plants and the origins of the anthocyanin biosynthetic pathway. Molecular Phylogenetics and Evolution 151: 106904. [doi: 10.1016/j. ympev.2020.106904; ‘‘Many early land plants such as mosses, liverworts, and ferns produce flavonoid pigments, but their biosynthetic origins and homologies to the anthocyanin pathway remain uncertain.’’ ‘‘We found that the entire pathway was not intact until the most recent common ancestor of seed plants and that orthologs of many downstream enzymes are absent from seedless plants including mosses, liverworts, and ferns.’’] Pietrykowska, H., I. Sierocka, A. Zielezinski, A. Alisha, J. C. Carrasco-Sánchez, A. Jarmołowski, W. M. Karłowski & Z. Szweykowska-Kulińska. 2022. Biogenesis, conservation, and function of miRNA in liverworts. Journal of Experimental Botany 73(13): 4528–4545. [doi: 10.1093/jxb/erac098.] Pihlaja, K., T. Marsh, R. Juutinen, S. Huttunen, T. Ulvinen, T. Hopkins, T. Kypärä, A. Parnela, K. Syrjänen, E. Ervasti, A.-P. Huhta, O. Vainio, S. Laaka-Lindberg, A. Kestilä, L. Maanpää, T. Kuitunen & E. Hankonen. 2022. New national and regional biological records for Finland 10. Contributions to Bryophyta and Marchantiophyta 9. Memoranda Societatis pro Fauna et Flora Fennica 98: 21–35. [Brachythecium udum, Lewinskya 148 The Bryologist 126(1): 2023\",\"PeriodicalId\":55319,\"journal\":{\"name\":\"Bryologist\",\"volume\":\"126 1\",\"pages\":\"139 - 153\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bryologist\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1639/0007-2745-126.1.139\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bryologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1639/0007-2745-126.1.139","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 1
摘要
巴西新发现的不列颠藻和哥伦比亚小球藻。佩雷拉-卡斯特罗,a.v., Á。M. González-Rodrı ? guez & B. FernándezMarı ? n。2022. 当时间不重要时:限制苔藓植物的碳平衡。植物学报,32(3):444 - 444。(doi: 10.1093 / jxb / erac104。佩雷拉-卡斯特罗,a.v., m.j.沃特曼,s.a.罗宾逊和j.f Flexas。2022。苔藓植物光合作用的局限性:关于方法论的确定性和不确定性。植物学报,30(3):444 - 444。(doi: 10.1093 / jxb / erac189。[j]陈建军,陈建军,陈建军,陈建军。2012。MosSkin:一种基于苔藓的轻型建筑系统。建筑与环境[j];(doi: 10.1016 / j。buildenv.2022.109283;“我们开发了一种低成本、轻质的建筑苔藓围护系统,以解决人口密集的城市化地区缺乏绿化的问题。在野外对几种苔藓进行了取样,根据它们耐受城市环境非生物压力的能力进行了选择,在受控条件下进行了栽培,并测试了它们在不同(建筑)材料上的生长能力。包括:麻草、有蹄草、花竹、花竹、花竹、花竹。[A]潘明,A. B.霍瓦特,D. B.梅特卡夫,A.普里莫瑞和K.鲁克。2022。在未来的气候中,热带山地云雾森林中与地被苔藓有关的高固氮率将急剧下降。生态学报36(7):1772-1781。(doi: 10.1111 / 1365 - 2435.14088。[B] Petrinec, D. babiki, T. Meštrović, T. bogdanoviki, M. popijaje & D. Rašeta。2022. 克罗地亚kopa ki Rit自然公园的苔藓,作为多瑙河中游流域潜在放射性污染的生物指标。科学通报12:11617[1-8]。(doi: 10.1038 / s41598 - 022 - 15716 - 3。[m]王晓明,王晓明,王晓明,等。角蒿酚代谢的第一步:两种苯丙氨酸解氨酶亚型的分子和生化特征。植物学报,26(3):1-11。(doi: 10.1007 / s00425 - 022 - 03944 - w。[英语背诵文选][j]Mueller & B. Classen, 2022。角苔和苔的细胞壁:早期陆生植物进化的创新?植物学报,30(3):444 - 444。(doi: 10.1093 / jxb / erac157。[2]张建军,张建军,张建军,张建军,张建军。2008。系统基因组学揭示了陆地植物的红紫色趋同进化和花青素生物合成途径的起源。分子系统发育与进化[j];(doi: 10.1016 / j。ympev.2020.106904;许多早期的陆地植物,如苔藓、苔类植物和蕨类植物都能产生类黄酮色素,但它们的生物合成来源和与花青素途径的同源性仍不确定。“我们发现整个途径直到最近的种子植物共同祖先才完整,并且许多下游酶的同源物在无籽植物中缺失,包括苔藓、苔类和蕨类植物。”] Pietrykowska, H., I. Sierocka, A. Zielezinski, A. Alisha, j.c. Carrasco-Sánchez, A. Jarmołowski, W. M. Karłowski & Z. Szweykowska-Kulińska。2022. miRNA在苔类植物中的生物发生、保存和功能。植物学报,32(3):444 - 444。(doi: 10.1093 / jxb / erac098。] Pihlaja, K, T. Marsh, R. Juutinen, S. Huttunen, T. Ulvinen, T. Hopkins, T. Kypärä, A. Parnela, K. Syrjänen, E. Ervasti, A. p。胡赫塔,O. Vainio, S. Laaka-Lindberg, A. Kestilä, L. Maanpää, T. Kuitunen和E. Hankonen. 2022。芬兰新的国家和地区生物记录对苔藓植物和海洋植物的贡献动物学报,98:21-35。[j] .植物学报,2014 (1):1 - 4
Brittonodoxa allinckxiorum and Callicostella colombica new for Brazil.] Perera-Castro, A. V., Á. M. González-Rodrı́guez & B. FernándezMarı́n. 2022. When time is not of the essence: constraints to the carbon balance of bryophytes. Journal of Experimental Botany 73(13): 4562–4575. [doi: 10.1093/jxb/erac104.] Perera-Castro, A. V., M. J. Waterman, S. A. Robinson & J. Flexas. 2022. Limitations to photosynthesis in bryophytes: certainties and uncertainties regarding methodology. Journal of Experimental Botany 73(13): 4592–4604. [doi: 10.1093/jxb/erac189.] Perini, K., P. Castellari, D. Gisotti, A. Giachetta, C. Turcato & E. Roccotiello. 2022. MosSkin: a moss-based lightweight building system. Building and Environment 221: 109283. [doi: 10.1016/j. buildenv.2022.109283; ‘‘A low cost and lightweight moss envelope system for buildings has been developed to address the problem of the lack of greening in densely urbanized areas. Several moss species have been sampled in the wild, selected, based on their ability to tolerate the abiotic stresses of urban environments, cultivated in controlled conditions and tested for their growth capacity on different (building) materials.’’ Incl. Homalothecium sericeum, Barbula unguiculata, Pseudoleskea incurvata, Grimmia pulvinata and Hypnum cupressiforme.] Permin, A., A. B. Horwath, D. B. Metcalfe, A. Priemé & K. Rousk. 2022. High nitrogen-fixing rates associated with groundcovering mosses in a tropical mountain cloud forest will decrease drastically in a future climate. Functional Ecology 36(7): 1772–1781. [doi: 10.1111/1365-2435.14088.] Petrinec, B., D. Babić, T. Meštrović, T. Bogdanović, M. Popijač & D. Rašeta. 2022. Mosses in the Kopački Rit Nature Park, Croatia, as bioindicators of a potential radioactive contamination of the middle Danube River Basin. Scientific Reports 12: 11617 [1–8]. [doi: 10.1038/s41598-022-15716-3.] Pezeshki, S., I. Warmbier, T. Busch, E. Bauerbach, P. Szövényi & M. Petersen. 2022. The first step into phenolic metabolism in the hornwort Anthoceros agrestis: molecular and biochemical characterization of two phenylalanine ammonia-lyase isoforms. Planta 256: 33 [1–11]. [doi: 10.1007/s00425-022-03944-w.] Pfeifer, L., K.-K. Mueller & B. Classen. 2022. The cell wall of hornworts and liverworts: innovations in early land plant evolution? Journal of Experimental Botany 73(13): 4454–4472. [doi: 10.1093/jxb/erac157.] Piatkowski, B. T., K. Imwattana, E. A. Tripp, D. J. Weston, A. L. Healey, J. Schmutz & A. J. Shaw. 2020. Phylogenomics reveals convergent evolution of red-violet coloration in land plants and the origins of the anthocyanin biosynthetic pathway. Molecular Phylogenetics and Evolution 151: 106904. [doi: 10.1016/j. ympev.2020.106904; ‘‘Many early land plants such as mosses, liverworts, and ferns produce flavonoid pigments, but their biosynthetic origins and homologies to the anthocyanin pathway remain uncertain.’’ ‘‘We found that the entire pathway was not intact until the most recent common ancestor of seed plants and that orthologs of many downstream enzymes are absent from seedless plants including mosses, liverworts, and ferns.’’] Pietrykowska, H., I. Sierocka, A. Zielezinski, A. Alisha, J. C. Carrasco-Sánchez, A. Jarmołowski, W. M. Karłowski & Z. Szweykowska-Kulińska. 2022. Biogenesis, conservation, and function of miRNA in liverworts. Journal of Experimental Botany 73(13): 4528–4545. [doi: 10.1093/jxb/erac098.] Pihlaja, K., T. Marsh, R. Juutinen, S. Huttunen, T. Ulvinen, T. Hopkins, T. Kypärä, A. Parnela, K. Syrjänen, E. Ervasti, A.-P. Huhta, O. Vainio, S. Laaka-Lindberg, A. Kestilä, L. Maanpää, T. Kuitunen & E. Hankonen. 2022. New national and regional biological records for Finland 10. Contributions to Bryophyta and Marchantiophyta 9. Memoranda Societatis pro Fauna et Flora Fennica 98: 21–35. [Brachythecium udum, Lewinskya 148 The Bryologist 126(1): 2023
期刊介绍:
The Bryologist is an international journal devoted to all aspects of bryology and lichenology, and we welcome reviews, research papers and short communications from all members of American Bryological and Lichenological Society (ABLS). We also publish lists of current literature, book reviews and news items about members and event. All back issues of the journal are maintained electronically. The first issue of The Bryologist was published in 1898, with the formation of the Society.
Author instructions are available from the journal website and the manuscript submission site, each of which is listed at the ABLS.org website.
All submissions to the journal are subject to at least two peer reviews, and both the reviews and the identities of reviewers are treated confidentially. Reviewers are asked to acknowledge possible conflicts of interest and to provide strictly objective assessments of the suitability and scholarly merit of the submissions under review.