{"title":"弱稀疏性下基于稀疏列逆算子的统一精度矩阵估计框架","authors":"Zeyu Wu, Cheng Wang, Weidong Liu","doi":"10.1007/s10463-022-00856-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we estimate the high-dimensional precision matrix under the weak sparsity condition where many entries are nearly zero. We revisit the sparse column-wise inverse operator estimator and derive its general error bounds under the weak sparsity condition. A unified framework is established to deal with various cases including the heavy-tailed data, the non-paranormal data, and the matrix variate data. These new methods can achieve the same convergence rates as the existing methods and can be implemented efficiently.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10463-022-00856-0.pdf","citationCount":"0","resultStr":"{\"title\":\"A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity\",\"authors\":\"Zeyu Wu, Cheng Wang, Weidong Liu\",\"doi\":\"10.1007/s10463-022-00856-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we estimate the high-dimensional precision matrix under the weak sparsity condition where many entries are nearly zero. We revisit the sparse column-wise inverse operator estimator and derive its general error bounds under the weak sparsity condition. A unified framework is established to deal with various cases including the heavy-tailed data, the non-paranormal data, and the matrix variate data. These new methods can achieve the same convergence rates as the existing methods and can be implemented efficiently.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10463-022-00856-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-022-00856-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-022-00856-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity
In this paper, we estimate the high-dimensional precision matrix under the weak sparsity condition where many entries are nearly zero. We revisit the sparse column-wise inverse operator estimator and derive its general error bounds under the weak sparsity condition. A unified framework is established to deal with various cases including the heavy-tailed data, the non-paranormal data, and the matrix variate data. These new methods can achieve the same convergence rates as the existing methods and can be implemented efficiently.