W. Ji, P. Zhao, Chuang-Yao Zhao, Jing Ding, W. Tao
{"title":"池外沸腾传热的水和纳米流体表面具有较高的粗糙度和不同的润湿性","authors":"W. Ji, P. Zhao, Chuang-Yao Zhao, Jing Ding, W. Tao","doi":"10.1080/15567265.2018.1497110","DOIUrl":null,"url":null,"abstract":"ABSTRACT In order to investigate the effect of surface wettability on the pool boiling heat transfer, nucleate pool boiling experiments were conducted with deionized water and silica based nanofluid. A higher surface roughness value in the range of 3.9 ~ 6.0μm was tested. The contact angle was from 4.7° to 153°, and heat flux was from 30kW/m2 to 300kW/m2. Experimental results showed that hydrophilicity diminish the boiling heat transfer of silica nanofluid on the surfaces with higher roughness. As the increment of nanofluid mass concentration from 0.025% to 0.1%, a further reduction of heat transfer coefficient was observed. For the super hydrophobic surface with higher roughness (contact angle 153.0°), boiling heat transfer was enhanced at heat flux less than 93 kW/m2, and then the heat transfer degraded at higher heat flux.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"22 1","pages":"296 - 323"},"PeriodicalIF":2.7000,"publicationDate":"2018-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15567265.2018.1497110","citationCount":"24","resultStr":"{\"title\":\"Pool boiling heat transfer of water and nanofluid outside the surface with higher roughness and different wettability\",\"authors\":\"W. Ji, P. Zhao, Chuang-Yao Zhao, Jing Ding, W. Tao\",\"doi\":\"10.1080/15567265.2018.1497110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In order to investigate the effect of surface wettability on the pool boiling heat transfer, nucleate pool boiling experiments were conducted with deionized water and silica based nanofluid. A higher surface roughness value in the range of 3.9 ~ 6.0μm was tested. The contact angle was from 4.7° to 153°, and heat flux was from 30kW/m2 to 300kW/m2. Experimental results showed that hydrophilicity diminish the boiling heat transfer of silica nanofluid on the surfaces with higher roughness. As the increment of nanofluid mass concentration from 0.025% to 0.1%, a further reduction of heat transfer coefficient was observed. For the super hydrophobic surface with higher roughness (contact angle 153.0°), boiling heat transfer was enhanced at heat flux less than 93 kW/m2, and then the heat transfer degraded at higher heat flux.\",\"PeriodicalId\":49784,\"journal\":{\"name\":\"Nanoscale and Microscale Thermophysical Engineering\",\"volume\":\"22 1\",\"pages\":\"296 - 323\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2018-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15567265.2018.1497110\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale and Microscale Thermophysical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15567265.2018.1497110\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2018.1497110","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Pool boiling heat transfer of water and nanofluid outside the surface with higher roughness and different wettability
ABSTRACT In order to investigate the effect of surface wettability on the pool boiling heat transfer, nucleate pool boiling experiments were conducted with deionized water and silica based nanofluid. A higher surface roughness value in the range of 3.9 ~ 6.0μm was tested. The contact angle was from 4.7° to 153°, and heat flux was from 30kW/m2 to 300kW/m2. Experimental results showed that hydrophilicity diminish the boiling heat transfer of silica nanofluid on the surfaces with higher roughness. As the increment of nanofluid mass concentration from 0.025% to 0.1%, a further reduction of heat transfer coefficient was observed. For the super hydrophobic surface with higher roughness (contact angle 153.0°), boiling heat transfer was enhanced at heat flux less than 93 kW/m2, and then the heat transfer degraded at higher heat flux.
期刊介绍:
Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation.
The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as:
transport and interactions of electrons, phonons, photons, and spins in solids,
interfacial energy transport and phase change processes,
microscale and nanoscale fluid and mass transport and chemical reaction,
molecular-level energy transport, storage, conversion, reaction, and phase transition,
near field thermal radiation and plasmonic effects,
ultrafast and high spatial resolution measurements,
multi length and time scale modeling and computations,
processing of nanostructured materials, including composites,
micro and nanoscale manufacturing,
energy conversion and storage devices and systems,
thermal management devices and systems,
microfluidic and nanofluidic devices and systems,
molecular analysis devices and systems.