高危患者的定义

Gemma Phillips, A. Cameron, T. Szakmany
{"title":"高危患者的定义","authors":"Gemma Phillips, A. Cameron, T. Szakmany","doi":"10.21037/jeccm.2019.08.10","DOIUrl":null,"url":null,"abstract":"As the volume of surgery continues to grow worldwide, the identification of high-risk patients is an important goal to guide clinical decision making in the perioperative period. Risk stratification evolved over the last decade from simple risk stratification tools, still used widely in the clinical arena to more sophisticated risk prediction models based on machine learning and latent class analysis, which can be incorporated into a well-developed electronic patient record or critical care clinical information system. As the debate about which patients will benefit most from critical care admission and interventions is still ongoing, the identification of the high-risk patient is a continuing challenge. In this review we will summarise the latest developments in the use of these risk stratification tools and risk prediction models, which can be utilised to identify the high-risk surgical candidate.","PeriodicalId":73727,"journal":{"name":"Journal of emergency and critical care medicine (Hong Kong, China)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.21037/jeccm.2019.08.10","citationCount":"0","resultStr":"{\"title\":\"Defining the high-risk patient\",\"authors\":\"Gemma Phillips, A. Cameron, T. Szakmany\",\"doi\":\"10.21037/jeccm.2019.08.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the volume of surgery continues to grow worldwide, the identification of high-risk patients is an important goal to guide clinical decision making in the perioperative period. Risk stratification evolved over the last decade from simple risk stratification tools, still used widely in the clinical arena to more sophisticated risk prediction models based on machine learning and latent class analysis, which can be incorporated into a well-developed electronic patient record or critical care clinical information system. As the debate about which patients will benefit most from critical care admission and interventions is still ongoing, the identification of the high-risk patient is a continuing challenge. In this review we will summarise the latest developments in the use of these risk stratification tools and risk prediction models, which can be utilised to identify the high-risk surgical candidate.\",\"PeriodicalId\":73727,\"journal\":{\"name\":\"Journal of emergency and critical care medicine (Hong Kong, China)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.21037/jeccm.2019.08.10\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of emergency and critical care medicine (Hong Kong, China)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21037/jeccm.2019.08.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of emergency and critical care medicine (Hong Kong, China)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21037/jeccm.2019.08.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着全球手术量的持续增长,识别高危患者是指导围手术期临床决策的重要目标。在过去的十年里,风险分层从仍然在临床领域广泛使用的简单风险分层工具发展到基于机器学习和潜在类别分析的更复杂的风险预测模型,这些模型可以被纳入完善的电子病历或重症监护临床信息系统中。由于关于哪些患者将从重症监护入院和干预中受益最大的争论仍在进行中,识别高危患者是一个持续的挑战。在这篇综述中,我们将总结使用这些风险分层工具和风险预测模型的最新进展,这些工具和模型可用于识别高风险的候选手术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Defining the high-risk patient
As the volume of surgery continues to grow worldwide, the identification of high-risk patients is an important goal to guide clinical decision making in the perioperative period. Risk stratification evolved over the last decade from simple risk stratification tools, still used widely in the clinical arena to more sophisticated risk prediction models based on machine learning and latent class analysis, which can be incorporated into a well-developed electronic patient record or critical care clinical information system. As the debate about which patients will benefit most from critical care admission and interventions is still ongoing, the identification of the high-risk patient is a continuing challenge. In this review we will summarise the latest developments in the use of these risk stratification tools and risk prediction models, which can be utilised to identify the high-risk surgical candidate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信