具有光滑边界的非经典最小化曲面

IF 1.3 1区 数学 Q1 MATHEMATICS
Camillo De Lellis, G. Philippis, J. Hirsch
{"title":"具有光滑边界的非经典最小化曲面","authors":"Camillo De Lellis, G. Philippis, J. Hirsch","doi":"10.4310/jdg/1669998183","DOIUrl":null,"url":null,"abstract":"We construct a Riemannian metric $g$ on $\\mathbb{R}^4$ (arbitrarily close to the euclidean one) and a smooth simple closed curve $\\Gamma\\subset \\mathbb R^4$ such that the unique area minimizing surface spanned by $\\Gamma$ has infinite topology. Furthermore the metric is almost Kahler and the area minimizing surface is calibrated.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Nonclassical minimizing surfaces with smooth boundary\",\"authors\":\"Camillo De Lellis, G. Philippis, J. Hirsch\",\"doi\":\"10.4310/jdg/1669998183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a Riemannian metric $g$ on $\\\\mathbb{R}^4$ (arbitrarily close to the euclidean one) and a smooth simple closed curve $\\\\Gamma\\\\subset \\\\mathbb R^4$ such that the unique area minimizing surface spanned by $\\\\Gamma$ has infinite topology. Furthermore the metric is almost Kahler and the area minimizing surface is calibrated.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jdg/1669998183\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1669998183","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

我们在$\mathbb{R}^4$上构造了一个黎曼度量$g$(任意接近欧几里德度量$g$)和一个光滑的简单闭曲线$\Gamma\子集\mathbb R^4$,使得$\Gamma$张成的唯一面积最小化曲面具有无限拓扑。此外,度量几乎是Kahler,面积最小曲面被校准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonclassical minimizing surfaces with smooth boundary
We construct a Riemannian metric $g$ on $\mathbb{R}^4$ (arbitrarily close to the euclidean one) and a smooth simple closed curve $\Gamma\subset \mathbb R^4$ such that the unique area minimizing surface spanned by $\Gamma$ has infinite topology. Furthermore the metric is almost Kahler and the area minimizing surface is calibrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信