{"title":"一种新的基于主成分分析和支持向量机的慢性肾脏疾病综合诊断系统","authors":"A. Khamparia, Babita Pandey","doi":"10.1504/IJDATS.2020.10018953","DOIUrl":null,"url":null,"abstract":"The alarming growth of chronic kidney disease has become a major issue in our nation. The kidney disease does not have specific target, but individuals with diseases such as obesity, cardiovascular disease and diabetes are all at increased risk. On the contrary, there is no such awareness about related kidney disease and its failure which affects individual's health. Therefore, there is need of providing advanced diagnostic system which improves health condition of individual. The intent of proposed work is to combine emerging data reduction technique, i.e., principal component analysis (PCA) and supervised classification technique support vector machine (SVM) for examination of kidney disease through which patients were being suffered from past. Variety of statistical reasoning and probabilistic features were encountered in proposed work like accuracy and recall parameters which examine the validity of dataset and obtained results. Experimental results concluded that SVM with Gaussian radial basis kernel achieved higher precision and performed better than other models in term of diagnostic accuracy rates.","PeriodicalId":38582,"journal":{"name":"International Journal of Data Analysis Techniques and Strategies","volume":"12 1","pages":"99-113"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Novel Integrated Principal Component Analysis and Support vector Machines based diagnostic system for detection of Chronic Kidney disease\",\"authors\":\"A. Khamparia, Babita Pandey\",\"doi\":\"10.1504/IJDATS.2020.10018953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The alarming growth of chronic kidney disease has become a major issue in our nation. The kidney disease does not have specific target, but individuals with diseases such as obesity, cardiovascular disease and diabetes are all at increased risk. On the contrary, there is no such awareness about related kidney disease and its failure which affects individual's health. Therefore, there is need of providing advanced diagnostic system which improves health condition of individual. The intent of proposed work is to combine emerging data reduction technique, i.e., principal component analysis (PCA) and supervised classification technique support vector machine (SVM) for examination of kidney disease through which patients were being suffered from past. Variety of statistical reasoning and probabilistic features were encountered in proposed work like accuracy and recall parameters which examine the validity of dataset and obtained results. Experimental results concluded that SVM with Gaussian radial basis kernel achieved higher precision and performed better than other models in term of diagnostic accuracy rates.\",\"PeriodicalId\":38582,\"journal\":{\"name\":\"International Journal of Data Analysis Techniques and Strategies\",\"volume\":\"12 1\",\"pages\":\"99-113\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Analysis Techniques and Strategies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJDATS.2020.10018953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Analysis Techniques and Strategies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJDATS.2020.10018953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
A Novel Integrated Principal Component Analysis and Support vector Machines based diagnostic system for detection of Chronic Kidney disease
The alarming growth of chronic kidney disease has become a major issue in our nation. The kidney disease does not have specific target, but individuals with diseases such as obesity, cardiovascular disease and diabetes are all at increased risk. On the contrary, there is no such awareness about related kidney disease and its failure which affects individual's health. Therefore, there is need of providing advanced diagnostic system which improves health condition of individual. The intent of proposed work is to combine emerging data reduction technique, i.e., principal component analysis (PCA) and supervised classification technique support vector machine (SVM) for examination of kidney disease through which patients were being suffered from past. Variety of statistical reasoning and probabilistic features were encountered in proposed work like accuracy and recall parameters which examine the validity of dataset and obtained results. Experimental results concluded that SVM with Gaussian radial basis kernel achieved higher precision and performed better than other models in term of diagnostic accuracy rates.