Picard数1的投影球面流形的最大Ricci下界

Pub Date : 2023-08-08 DOI:10.1007/s10455-023-09915-y
DongSeon Hwang, Shin-young Kim, Kyeong-Dong Park
{"title":"Picard数1的投影球面流形的最大Ricci下界","authors":"DongSeon Hwang,&nbsp;Shin-young Kim,&nbsp;Kyeong-Dong Park","doi":"10.1007/s10455-023-09915-y","DOIUrl":null,"url":null,"abstract":"<div><p>A horospherical variety is a normal <i>G</i>-variety such that a connected reductive algebraic group <i>G</i> acts with an open orbit isomorphic to a torus bundle over a rational homogeneous manifold. The projective horospherical manifolds of Picard number one are classified by Pasquier, and it turned out that the automorphism groups of all nonhomogeneous ones are non-reductive, which implies that they admit no Kähler–Einstein metrics. As a numerical measure of the extent to which a Fano manifold is close to be Kähler–Einstein, we compute the greatest Ricci lower bounds of projective horospherical manifolds of Picard number one using the barycenter of each moment polytope with respect to the Duistermaat–Heckman measure based on a recent work of Delcroix and Hultgren. In particular, the greatest Ricci lower bound of the odd symplectic Grassmannian <span>\\(\\text {SGr}(n,2n+1)\\)</span> can be arbitrarily close to zero as <i>n</i> grows.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09915-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Greatest Ricci lower bounds of projective horospherical manifolds of Picard number one\",\"authors\":\"DongSeon Hwang,&nbsp;Shin-young Kim,&nbsp;Kyeong-Dong Park\",\"doi\":\"10.1007/s10455-023-09915-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A horospherical variety is a normal <i>G</i>-variety such that a connected reductive algebraic group <i>G</i> acts with an open orbit isomorphic to a torus bundle over a rational homogeneous manifold. The projective horospherical manifolds of Picard number one are classified by Pasquier, and it turned out that the automorphism groups of all nonhomogeneous ones are non-reductive, which implies that they admit no Kähler–Einstein metrics. As a numerical measure of the extent to which a Fano manifold is close to be Kähler–Einstein, we compute the greatest Ricci lower bounds of projective horospherical manifolds of Picard number one using the barycenter of each moment polytope with respect to the Duistermaat–Heckman measure based on a recent work of Delcroix and Hultgren. In particular, the greatest Ricci lower bound of the odd symplectic Grassmannian <span>\\\\(\\\\text {SGr}(n,2n+1)\\\\)</span> can be arbitrarily close to zero as <i>n</i> grows.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10455-023-09915-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-023-09915-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09915-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

星形球簇是一个正规的G-簇,使得连通的约化代数群G与同构于有理齐次流形上的环面丛的开轨道作用。Pasquier对Picard数为1的投影星形球面流形进行了分类,证明了所有非齐次流形的自同构群都是非约化的,这意味着它们不允许Kähler–Einstein度量。作为Fano流形接近Kähler–Einstein程度的数值测度,我们根据Delcroix和Hultgren最近的一项工作,利用每个矩多面体相对于Duistermaat–Heckman测度的重心,计算了Picard一号投影球面流形的最大Ricci下界。特别地,随着n的增长,奇辛Grassmannian(\text{SGr}(n,2n+1))的最大Ricci下界可以任意地接近于零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Greatest Ricci lower bounds of projective horospherical manifolds of Picard number one

分享
查看原文
Greatest Ricci lower bounds of projective horospherical manifolds of Picard number one

A horospherical variety is a normal G-variety such that a connected reductive algebraic group G acts with an open orbit isomorphic to a torus bundle over a rational homogeneous manifold. The projective horospherical manifolds of Picard number one are classified by Pasquier, and it turned out that the automorphism groups of all nonhomogeneous ones are non-reductive, which implies that they admit no Kähler–Einstein metrics. As a numerical measure of the extent to which a Fano manifold is close to be Kähler–Einstein, we compute the greatest Ricci lower bounds of projective horospherical manifolds of Picard number one using the barycenter of each moment polytope with respect to the Duistermaat–Heckman measure based on a recent work of Delcroix and Hultgren. In particular, the greatest Ricci lower bound of the odd symplectic Grassmannian \(\text {SGr}(n,2n+1)\) can be arbitrarily close to zero as n grows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信