{"title":"回火稳定过程极值的蒙特卡罗算法","authors":"J. G. González Cázares, Aleksandar Mijatovi'c","doi":"10.1017/apr.2023.1","DOIUrl":null,"url":null,"abstract":"\n We develop a novel Monte Carlo algorithm for the vector consisting of the supremum, the time at which the supremum is attained, and the position at a given (constant) time of an exponentially tempered Lévy process. The algorithm, based on the increments of the process without tempering, converges geometrically fast (as a function of the computational cost) for discontinuous and locally Lipschitz functions of the vector. We prove that the corresponding multilevel Monte Carlo estimator has optimal computational complexity (i.e. of order \n \n \n \n$\\varepsilon^{-2}$\n\n \n if the mean squared error is at most \n \n \n \n$\\varepsilon^2$\n\n \n ) and provide its central limit theorem (CLT). Using the CLT we construct confidence intervals for barrier option prices and various risk measures based on drawdown under the tempered stable (CGMY) model calibrated/estimated on real-world data. We provide non-asymptotic and asymptotic comparisons of our algorithm with existing approximations, leading to rule-of-thumb principles guiding users to the best method for a given set of parameters. We illustrate the performance of the algorithm with numerical examples.","PeriodicalId":53160,"journal":{"name":"Advances in Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Monte Carlo algorithm for the extrema of tempered stable processes\",\"authors\":\"J. G. González Cázares, Aleksandar Mijatovi'c\",\"doi\":\"10.1017/apr.2023.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We develop a novel Monte Carlo algorithm for the vector consisting of the supremum, the time at which the supremum is attained, and the position at a given (constant) time of an exponentially tempered Lévy process. The algorithm, based on the increments of the process without tempering, converges geometrically fast (as a function of the computational cost) for discontinuous and locally Lipschitz functions of the vector. We prove that the corresponding multilevel Monte Carlo estimator has optimal computational complexity (i.e. of order \\n \\n \\n \\n$\\\\varepsilon^{-2}$\\n\\n \\n if the mean squared error is at most \\n \\n \\n \\n$\\\\varepsilon^2$\\n\\n \\n ) and provide its central limit theorem (CLT). Using the CLT we construct confidence intervals for barrier option prices and various risk measures based on drawdown under the tempered stable (CGMY) model calibrated/estimated on real-world data. We provide non-asymptotic and asymptotic comparisons of our algorithm with existing approximations, leading to rule-of-thumb principles guiding users to the best method for a given set of parameters. We illustrate the performance of the algorithm with numerical examples.\",\"PeriodicalId\":53160,\"journal\":{\"name\":\"Advances in Applied Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/apr.2023.1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2023.1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A Monte Carlo algorithm for the extrema of tempered stable processes
We develop a novel Monte Carlo algorithm for the vector consisting of the supremum, the time at which the supremum is attained, and the position at a given (constant) time of an exponentially tempered Lévy process. The algorithm, based on the increments of the process without tempering, converges geometrically fast (as a function of the computational cost) for discontinuous and locally Lipschitz functions of the vector. We prove that the corresponding multilevel Monte Carlo estimator has optimal computational complexity (i.e. of order
$\varepsilon^{-2}$
if the mean squared error is at most
$\varepsilon^2$
) and provide its central limit theorem (CLT). Using the CLT we construct confidence intervals for barrier option prices and various risk measures based on drawdown under the tempered stable (CGMY) model calibrated/estimated on real-world data. We provide non-asymptotic and asymptotic comparisons of our algorithm with existing approximations, leading to rule-of-thumb principles guiding users to the best method for a given set of parameters. We illustrate the performance of the algorithm with numerical examples.
期刊介绍:
The Advances in Applied Probability has been published by the Applied Probability Trust for over four decades, and is a companion publication to the Journal of Applied Probability. It contains mathematical and scientific papers of interest to applied probabilists, with emphasis on applications in a broad spectrum of disciplines, including the biosciences, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used.
A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.