{"title":"扰动条件下深部大理岩的水力-力学耦合行为及统计损伤本构模型","authors":"Zhiliang Wang, Shumin Wang, Jianguo Wang","doi":"10.1177/10567895231174630","DOIUrl":null,"url":null,"abstract":"To study the effect of excavation disturbance on hydro-mechanical coupling characteristics of deep marble, both artificially disturbed and intact marble samples were tested under different osmotic pressures. The stress-strain curve, characteristic stress, failure mode and strain energy were then compared between the disturbed and the intact samples under osmotic pressure. Finally, a statistical damage constitutive model was proposed to consider osmotic pressure and initial deformation based on assuming that the micro-element strength of marble obeys Weibull distribution. It is found that the disturbed sample has slightly lower peak stress and damage stress than the intact sample, but its resistance to hydraulic damage decreases significantly. In the initial stage of loading, the ratio of elastic strain energy of the intact sample is generally lower than that of the disturbed one. The characteristic points of the elastic strain energy ratio curve can be a good reference to determine the damage stress. This finding makes up for the deficiency of possible failure of the single definition of damage stress. The proposed statistical damage constitutive model can well reproduce the stress-strain responses under different osmotic pressure. At the same strain level, the rock damage is more significant if the osmotic pressure is higher. This study is of great significance to the development of deep rock mechanics theory and its application in engineering practice.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"32 1","pages":"889 - 913"},"PeriodicalIF":4.0000,"publicationDate":"2023-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydro-mechanical coupling behavior and statistical damage constitutive model of deep marble with disturbance\",\"authors\":\"Zhiliang Wang, Shumin Wang, Jianguo Wang\",\"doi\":\"10.1177/10567895231174630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To study the effect of excavation disturbance on hydro-mechanical coupling characteristics of deep marble, both artificially disturbed and intact marble samples were tested under different osmotic pressures. The stress-strain curve, characteristic stress, failure mode and strain energy were then compared between the disturbed and the intact samples under osmotic pressure. Finally, a statistical damage constitutive model was proposed to consider osmotic pressure and initial deformation based on assuming that the micro-element strength of marble obeys Weibull distribution. It is found that the disturbed sample has slightly lower peak stress and damage stress than the intact sample, but its resistance to hydraulic damage decreases significantly. In the initial stage of loading, the ratio of elastic strain energy of the intact sample is generally lower than that of the disturbed one. The characteristic points of the elastic strain energy ratio curve can be a good reference to determine the damage stress. This finding makes up for the deficiency of possible failure of the single definition of damage stress. The proposed statistical damage constitutive model can well reproduce the stress-strain responses under different osmotic pressure. At the same strain level, the rock damage is more significant if the osmotic pressure is higher. This study is of great significance to the development of deep rock mechanics theory and its application in engineering practice.\",\"PeriodicalId\":13837,\"journal\":{\"name\":\"International Journal of Damage Mechanics\",\"volume\":\"32 1\",\"pages\":\"889 - 913\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Damage Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10567895231174630\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895231174630","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Hydro-mechanical coupling behavior and statistical damage constitutive model of deep marble with disturbance
To study the effect of excavation disturbance on hydro-mechanical coupling characteristics of deep marble, both artificially disturbed and intact marble samples were tested under different osmotic pressures. The stress-strain curve, characteristic stress, failure mode and strain energy were then compared between the disturbed and the intact samples under osmotic pressure. Finally, a statistical damage constitutive model was proposed to consider osmotic pressure and initial deformation based on assuming that the micro-element strength of marble obeys Weibull distribution. It is found that the disturbed sample has slightly lower peak stress and damage stress than the intact sample, but its resistance to hydraulic damage decreases significantly. In the initial stage of loading, the ratio of elastic strain energy of the intact sample is generally lower than that of the disturbed one. The characteristic points of the elastic strain energy ratio curve can be a good reference to determine the damage stress. This finding makes up for the deficiency of possible failure of the single definition of damage stress. The proposed statistical damage constitutive model can well reproduce the stress-strain responses under different osmotic pressure. At the same strain level, the rock damage is more significant if the osmotic pressure is higher. This study is of great significance to the development of deep rock mechanics theory and its application in engineering practice.
期刊介绍:
Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics.
Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department.
The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).