{"title":"jaberi和mahmoodi结果的反例","authors":"A. Sahami, S. Shariati","doi":"10.1017/s0004972723000813","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>We show that <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723000813_inline1.png\" />\n\t\t<jats:tex-math>\n$\\ell ^1(\\mathbb {N}_\\wedge )$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723000813_inline2.png\" />\n\t\t<jats:tex-math>\n$\\varphi $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-amenable for each multiplicative linear functional <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723000813_inline3.png\" />\n\t\t<jats:tex-math>\n$\\varphi :\\ell ^1(\\mathbb {N}_\\wedge )\\rightarrow \\mathbb {C}.$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> This is a counterexample to the final corollary of Jaberi and Mahmoodi [‘On <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723000813_inline4.png\" />\n\t\t<jats:tex-math>\n$\\varphi $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-amenability of dual Banach algebras’, <jats:italic>Bull. Aust. Math. Soc.</jats:italic><jats:bold>105</jats:bold> (2022), 303–313] and shows that the final theorem in that paper is not valid.</jats:p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A COUNTEREXAMPLE TO A RESULT OF JABERI AND MAHMOODI\",\"authors\":\"A. Sahami, S. Shariati\",\"doi\":\"10.1017/s0004972723000813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\t <jats:p>We show that <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723000813_inline1.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\ell ^1(\\\\mathbb {N}_\\\\wedge )$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> is <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723000813_inline2.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\varphi $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>-amenable for each multiplicative linear functional <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723000813_inline3.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\varphi :\\\\ell ^1(\\\\mathbb {N}_\\\\wedge )\\\\rightarrow \\\\mathbb {C}.$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> This is a counterexample to the final corollary of Jaberi and Mahmoodi [‘On <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723000813_inline4.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\varphi $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>-amenability of dual Banach algebras’, <jats:italic>Bull. Aust. Math. Soc.</jats:italic><jats:bold>105</jats:bold> (2022), 303–313] and shows that the final theorem in that paper is not valid.</jats:p>\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972723000813\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972723000813","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A COUNTEREXAMPLE TO A RESULT OF JABERI AND MAHMOODI
We show that
$\ell ^1(\mathbb {N}_\wedge )$
is
$\varphi $
-amenable for each multiplicative linear functional
$\varphi :\ell ^1(\mathbb {N}_\wedge )\rightarrow \mathbb {C}.$
This is a counterexample to the final corollary of Jaberi and Mahmoodi [‘On
$\varphi $
-amenability of dual Banach algebras’, Bull. Aust. Math. Soc.105 (2022), 303–313] and shows that the final theorem in that paper is not valid.
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society