非线性离散系统周期的最优搜索

D. Dmitrishin, E. Franzheva, I. Iacob, A. Stokolos
{"title":"非线性离散系统周期的最优搜索","authors":"D. Dmitrishin, E. Franzheva, I. Iacob, A. Stokolos","doi":"10.12732/CAA.V22I4.11","DOIUrl":null,"url":null,"abstract":"We consider a classical problem of stabilization of a priori unknown unstable periodic orbits in nonlinear autonomous discrete dynamical systems. A new approach was suggested in [11], where a nonlinear delay feedback control (DFC) scheme with apparently optimal gain was introduced. The optimality criteria in [11] were stated in terms of the size of the convergence region for the system multipliers. In numerical simulations it turns out that the optimal coefficients (in the above sense) produce slowly convergent recurrences. In this paper we suggest a generalization of the formulas from [11] to improve the rate of convergence while preserving stability. The subtlety of the problem is illustrated in numerous numerical simulations examples. AMS Subject Classification: 93C10, 93C55 Received: June 13, 2017 ; Accepted: October 31, 2018 ; Published: November 14, 2018. doi: 10.12732/caa.v22i4.11 Dynamic Publishers, Inc., Acad. Publishers, Ltd. http://www.acadsol.eu/caa 664 D. DMITRISHIN, E. FRANZHEVA, I.E. IACOB, AND A. STOKOLOS","PeriodicalId":92887,"journal":{"name":"Communications in applied analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"OPTIMAL SEARCH FOR NONLINEAR DISCRETE SYSTEMS CYCLES\",\"authors\":\"D. Dmitrishin, E. Franzheva, I. Iacob, A. Stokolos\",\"doi\":\"10.12732/CAA.V22I4.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a classical problem of stabilization of a priori unknown unstable periodic orbits in nonlinear autonomous discrete dynamical systems. A new approach was suggested in [11], where a nonlinear delay feedback control (DFC) scheme with apparently optimal gain was introduced. The optimality criteria in [11] were stated in terms of the size of the convergence region for the system multipliers. In numerical simulations it turns out that the optimal coefficients (in the above sense) produce slowly convergent recurrences. In this paper we suggest a generalization of the formulas from [11] to improve the rate of convergence while preserving stability. The subtlety of the problem is illustrated in numerous numerical simulations examples. AMS Subject Classification: 93C10, 93C55 Received: June 13, 2017 ; Accepted: October 31, 2018 ; Published: November 14, 2018. doi: 10.12732/caa.v22i4.11 Dynamic Publishers, Inc., Acad. Publishers, Ltd. http://www.acadsol.eu/caa 664 D. DMITRISHIN, E. FRANZHEVA, I.E. IACOB, AND A. STOKOLOS\",\"PeriodicalId\":92887,\"journal\":{\"name\":\"Communications in applied analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in applied analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12732/CAA.V22I4.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in applied analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12732/CAA.V22I4.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究非线性自主离散动力系统中先验未知不稳定周期轨道的镇定问题。在[11]中,提出了一种增益明显最优的非线性延迟反馈控制(DFC)方案。[11]中的最优性准则是根据系统乘子的收敛区域的大小来陈述的。数值模拟表明,最优系数(在上述意义上)产生缓慢收敛的递归。在本文中,我们提出了从[11]的公式的推广,以提高收敛速度,同时保持稳定性。许多数值模拟实例说明了这个问题的微妙之处。AMS学科分类:93C10、93C55收稿日期:2017年6月13日;录用日期:2018年10月31日;发布日期:2018年11月14日。doi: 10.12732/caa.v22i4.11 Dynamic Publishers, Inc., Acad. Publishers, Ltd. http://www.acadsol.eu/caa 664 D. DMITRISHIN, E. FRANZHEVA, I.E. IACOB, AND A. STOKOLOS
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OPTIMAL SEARCH FOR NONLINEAR DISCRETE SYSTEMS CYCLES
We consider a classical problem of stabilization of a priori unknown unstable periodic orbits in nonlinear autonomous discrete dynamical systems. A new approach was suggested in [11], where a nonlinear delay feedback control (DFC) scheme with apparently optimal gain was introduced. The optimality criteria in [11] were stated in terms of the size of the convergence region for the system multipliers. In numerical simulations it turns out that the optimal coefficients (in the above sense) produce slowly convergent recurrences. In this paper we suggest a generalization of the formulas from [11] to improve the rate of convergence while preserving stability. The subtlety of the problem is illustrated in numerous numerical simulations examples. AMS Subject Classification: 93C10, 93C55 Received: June 13, 2017 ; Accepted: October 31, 2018 ; Published: November 14, 2018. doi: 10.12732/caa.v22i4.11 Dynamic Publishers, Inc., Acad. Publishers, Ltd. http://www.acadsol.eu/caa 664 D. DMITRISHIN, E. FRANZHEVA, I.E. IACOB, AND A. STOKOLOS
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信