一维Dirac-Klein-Gordon系统解的高Sobolev范数随时间的增长

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
Achenef Tesfahun
{"title":"一维Dirac-Klein-Gordon系统解的高Sobolev范数随时间的增长","authors":"Achenef Tesfahun","doi":"10.1142/S0219891619500127","DOIUrl":null,"url":null,"abstract":"We study the growth-in-time of higher order Sobolev norms of solutions to the Dirac–Klein–Gordon (DKG) equations in one space dimension. We show that these norms grow at most polynomially-in-time. The main ingredients in the proof are the upside-down [Formula: see text]-method which was introduced by Colliander, Keel, Staffilani, Takaoka and Tao, and bilinear null-form estimates.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S0219891619500127","citationCount":"2","resultStr":"{\"title\":\"Growth-in-time of higher Sobolev norms of solutions to the 1D Dirac–Klein–Gordon system\",\"authors\":\"Achenef Tesfahun\",\"doi\":\"10.1142/S0219891619500127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the growth-in-time of higher order Sobolev norms of solutions to the Dirac–Klein–Gordon (DKG) equations in one space dimension. We show that these norms grow at most polynomially-in-time. The main ingredients in the proof are the upside-down [Formula: see text]-method which was introduced by Colliander, Keel, Staffilani, Takaoka and Tao, and bilinear null-form estimates.\",\"PeriodicalId\":50182,\"journal\":{\"name\":\"Journal of Hyperbolic Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S0219891619500127\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hyperbolic Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219891619500127\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hyperbolic Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S0219891619500127","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

研究一维Dirac-Klein-Gordon (DKG)方程解的高阶Sobolev范数随时间的增长。我们证明这些范数最多以多项式随时间增长。证明的主要成分是由Colliander, Keel, Staffilani, Takaoka和Tao引入的倒立[公式:见文本]方法,以及双线性零形式估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Growth-in-time of higher Sobolev norms of solutions to the 1D Dirac–Klein–Gordon system
We study the growth-in-time of higher order Sobolev norms of solutions to the Dirac–Klein–Gordon (DKG) equations in one space dimension. We show that these norms grow at most polynomially-in-time. The main ingredients in the proof are the upside-down [Formula: see text]-method which was introduced by Colliander, Keel, Staffilani, Takaoka and Tao, and bilinear null-form estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hyperbolic Differential Equations
Journal of Hyperbolic Differential Equations 数学-物理:数学物理
CiteScore
1.10
自引率
0.00%
发文量
15
审稿时长
24 months
期刊介绍: This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in: Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions. Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc. Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations. Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc. General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations. Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信