Tien T. Dang, P. Harvey, L. Y. Chan, Yen‐Hua Huang, Q. Kaas, D. Craik
{"title":"环核苷酸Cter 27的突变是环核苷酸链折叠策略的一个例子","authors":"Tien T. Dang, P. Harvey, L. Y. Chan, Yen‐Hua Huang, Q. Kaas, D. Craik","doi":"10.1002/pep2.24284","DOIUrl":null,"url":null,"abstract":"In contrast to Möbius and trypsin inhibitor cyclotides, members of the bracelet subfamily are typically intractable to chemical synthesis and folding. In a significant advance in the field, the bracelet cyclotides ribe 33 and Cter 27 were successfully produced synthetically in moderate yield in a recent study. That synthetic method was a breakthrough as members of the bracelet subfamily of cyclotides had hitherto eluded attempts to be synthetically produced, apart from one report of cyO2 production in which a complicated folding strategy was used. In the current study the successful in vitro folding of three mutants of bracelet cyclotide Cter 27 is reported. This study broadens our understanding of the folding of bracelet cyclotides and elucidates the three dimensional structure of synthetic Cter 27, providing a new class of cyclotide molecular grafting scaffold for drug design applications.","PeriodicalId":19825,"journal":{"name":"Peptide Science","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mutagenesis of cyclotide Cter 27 exemplifies a robust folding strategy for bracelet cyclotides\",\"authors\":\"Tien T. Dang, P. Harvey, L. Y. Chan, Yen‐Hua Huang, Q. Kaas, D. Craik\",\"doi\":\"10.1002/pep2.24284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In contrast to Möbius and trypsin inhibitor cyclotides, members of the bracelet subfamily are typically intractable to chemical synthesis and folding. In a significant advance in the field, the bracelet cyclotides ribe 33 and Cter 27 were successfully produced synthetically in moderate yield in a recent study. That synthetic method was a breakthrough as members of the bracelet subfamily of cyclotides had hitherto eluded attempts to be synthetically produced, apart from one report of cyO2 production in which a complicated folding strategy was used. In the current study the successful in vitro folding of three mutants of bracelet cyclotide Cter 27 is reported. This study broadens our understanding of the folding of bracelet cyclotides and elucidates the three dimensional structure of synthetic Cter 27, providing a new class of cyclotide molecular grafting scaffold for drug design applications.\",\"PeriodicalId\":19825,\"journal\":{\"name\":\"Peptide Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peptide Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pep2.24284\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peptide Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pep2.24284","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Mutagenesis of cyclotide Cter 27 exemplifies a robust folding strategy for bracelet cyclotides
In contrast to Möbius and trypsin inhibitor cyclotides, members of the bracelet subfamily are typically intractable to chemical synthesis and folding. In a significant advance in the field, the bracelet cyclotides ribe 33 and Cter 27 were successfully produced synthetically in moderate yield in a recent study. That synthetic method was a breakthrough as members of the bracelet subfamily of cyclotides had hitherto eluded attempts to be synthetically produced, apart from one report of cyO2 production in which a complicated folding strategy was used. In the current study the successful in vitro folding of three mutants of bracelet cyclotide Cter 27 is reported. This study broadens our understanding of the folding of bracelet cyclotides and elucidates the three dimensional structure of synthetic Cter 27, providing a new class of cyclotide molecular grafting scaffold for drug design applications.
Peptide ScienceBiochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
5.20
自引率
4.20%
发文量
36
期刊介绍:
The aim of Peptide Science is to publish significant original research papers and up-to-date reviews covering the entire field of peptide research. Peptide Science provides a forum for papers exploring all aspects of peptide synthesis, materials, structure and bioactivity, including the use of peptides in exploring protein functions and protein-protein interactions. By incorporating both experimental and theoretical studies across the whole spectrum of peptide science, the journal serves the interdisciplinary biochemical, biomaterials, biophysical and biomedical research communities.
Peptide Science is the official journal of the American Peptide Society.