可容许Zariski–Riemann空间的K理论

IF 0.5 Q3 MATHEMATICS
Christian Dahlhausen
{"title":"可容许Zariski–Riemann空间的K理论","authors":"Christian Dahlhausen","doi":"10.2140/akt.2023.8.1","DOIUrl":null,"url":null,"abstract":"We study relative algebraic K-theory of admissible Zariski-Riemann spaces and prove that it is equivalent to G-theory and satisfies homotopy invariance. Moreover, we provide an example of a non-noetherian abelian category whose negative K-theory vanishes.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"K-theory of admissible Zariski–Riemann\\nspaces\",\"authors\":\"Christian Dahlhausen\",\"doi\":\"10.2140/akt.2023.8.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study relative algebraic K-theory of admissible Zariski-Riemann spaces and prove that it is equivalent to G-theory and satisfies homotopy invariance. Moreover, we provide an example of a non-noetherian abelian category whose negative K-theory vanishes.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2023.8.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2023.8.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

研究了可容许Zariski-Riemann空间的相对代数K-理论,证明了它等价于G-理论,并满足同伦不变性。此外,我们还提供了一个非诺瑟阿贝尔范畴的例子,它的负K理论消失了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
K-theory of admissible Zariski–Riemann spaces
We study relative algebraic K-theory of admissible Zariski-Riemann spaces and prove that it is equivalent to G-theory and satisfies homotopy invariance. Moreover, we provide an example of a non-noetherian abelian category whose negative K-theory vanishes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信