非齐次测度的并矢BMO的BMO

Pub Date : 2018-06-27 DOI:10.5565/publmat6412014
José M. Conde-Alonso
{"title":"非齐次测度的并矢BMO的BMO","authors":"José M. Conde-Alonso","doi":"10.5565/publmat6412014","DOIUrl":null,"url":null,"abstract":"The usual one third trick allows to reduce problems involving general cubes to a countable family. Moreover, this covering lemma uses only dyadic cubes, which allows to use nice martingale properties in harmonic analysis problems. We consider alternatives to this technique in spaces equipped with nonhomogeneous measures. This entails additional difficulties which forces us to consider martingale filtrations that are not regular. The dyadic covering that we find can be used to clarify the relationship between martingale BMO spaces and the most natural BMO space in this setting, which is the space RBMO introduced by Tolsa.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"BMO from dyadic BMO for nonhomogeneous measures\",\"authors\":\"José M. Conde-Alonso\",\"doi\":\"10.5565/publmat6412014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The usual one third trick allows to reduce problems involving general cubes to a countable family. Moreover, this covering lemma uses only dyadic cubes, which allows to use nice martingale properties in harmonic analysis problems. We consider alternatives to this technique in spaces equipped with nonhomogeneous measures. This entails additional difficulties which forces us to consider martingale filtrations that are not regular. The dyadic covering that we find can be used to clarify the relationship between martingale BMO spaces and the most natural BMO space in this setting, which is the space RBMO introduced by Tolsa.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/publmat6412014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6412014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

通常的三分之一技巧允许将涉及一般立方体的问题简化为可数族。此外,这个覆盖引理只使用了并矢立方体,这使得在调和分析问题中可以使用很好的鞅性质。我们考虑在具有非齐次度量的空间中替代这种技术。这带来了额外的困难,迫使我们考虑非规则的鞅过滤。我们发现的二元覆盖可以用来澄清鞅BMO空间与这种情况下最自然的BMO空间之间的关系,即Tolsa引入的空间RBMO。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
BMO from dyadic BMO for nonhomogeneous measures
The usual one third trick allows to reduce problems involving general cubes to a countable family. Moreover, this covering lemma uses only dyadic cubes, which allows to use nice martingale properties in harmonic analysis problems. We consider alternatives to this technique in spaces equipped with nonhomogeneous measures. This entails additional difficulties which forces us to consider martingale filtrations that are not regular. The dyadic covering that we find can be used to clarify the relationship between martingale BMO spaces and the most natural BMO space in this setting, which is the space RBMO introduced by Tolsa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信