M. Wahyudi, Hengki Tamando Sihotang, S. Efendi, M. Zarlis, H. Mawengkang, Desi Vinsensia
{"title":"不确定条件下生产计划效率的随机评估方法","authors":"M. Wahyudi, Hengki Tamando Sihotang, S. Efendi, M. Zarlis, H. Mawengkang, Desi Vinsensia","doi":"10.11591/ijece.v13i5.pp5542-5549","DOIUrl":null,"url":null,"abstract":"Planning production is an essential component of the decision-making process, which has a direct bearing on the effectiveness of production systems. This study’s objective is to investigate the efficiency performance of decision-making units (DMU) in relation to production planning issues. However, the production system in a manufacturing environment is frequently subject to uncertain situations, such as demand and labor, and this can have an effect not only on production but also on profit. The robust stochastic data envelopment analysis model was proposed in this study with maximizing the number of outputs as the objective function thus means of handling uncertainty in input and output in production planning problems. This model, which is based on stochastic data envelopment analysis and a method of robust optimization, was proposed with the intention of providing an efficient plan of production for each DMU of stage production. The model is applied to small and medium-sized businesses (SMEs), with inputs consisting of the cost of labor, the number of customers, and the quantity of raw materials, and the output consisting of profit and revenue. It has been demonstrated through implementation that the proposed model is both efficient and effective.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stochastic approach for evaluating production planning efficiency under uncertainty\",\"authors\":\"M. Wahyudi, Hengki Tamando Sihotang, S. Efendi, M. Zarlis, H. Mawengkang, Desi Vinsensia\",\"doi\":\"10.11591/ijece.v13i5.pp5542-5549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Planning production is an essential component of the decision-making process, which has a direct bearing on the effectiveness of production systems. This study’s objective is to investigate the efficiency performance of decision-making units (DMU) in relation to production planning issues. However, the production system in a manufacturing environment is frequently subject to uncertain situations, such as demand and labor, and this can have an effect not only on production but also on profit. The robust stochastic data envelopment analysis model was proposed in this study with maximizing the number of outputs as the objective function thus means of handling uncertainty in input and output in production planning problems. This model, which is based on stochastic data envelopment analysis and a method of robust optimization, was proposed with the intention of providing an efficient plan of production for each DMU of stage production. The model is applied to small and medium-sized businesses (SMEs), with inputs consisting of the cost of labor, the number of customers, and the quantity of raw materials, and the output consisting of profit and revenue. It has been demonstrated through implementation that the proposed model is both efficient and effective.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp5542-5549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5542-5549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
A stochastic approach for evaluating production planning efficiency under uncertainty
Planning production is an essential component of the decision-making process, which has a direct bearing on the effectiveness of production systems. This study’s objective is to investigate the efficiency performance of decision-making units (DMU) in relation to production planning issues. However, the production system in a manufacturing environment is frequently subject to uncertain situations, such as demand and labor, and this can have an effect not only on production but also on profit. The robust stochastic data envelopment analysis model was proposed in this study with maximizing the number of outputs as the objective function thus means of handling uncertainty in input and output in production planning problems. This model, which is based on stochastic data envelopment analysis and a method of robust optimization, was proposed with the intention of providing an efficient plan of production for each DMU of stage production. The model is applied to small and medium-sized businesses (SMEs), with inputs consisting of the cost of labor, the number of customers, and the quantity of raw materials, and the output consisting of profit and revenue. It has been demonstrated through implementation that the proposed model is both efficient and effective.
期刊介绍:
International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]