基于DUS变换的动力逆瑞利分布

IF 0.7 Q2 MATHEMATICS
M. I. Khan, A. Mustafa
{"title":"基于DUS变换的动力逆瑞利分布","authors":"M. I. Khan, A. Mustafa","doi":"10.28924/2291-8639-21-2023-61","DOIUrl":null,"url":null,"abstract":"This article reports an extension of powered inverse Rayleigh distribution via DUS transformation, named DUS-Powered Inverse Rayleigh (DUS-PIR) distribution. Some statistical properties of suggested distribution in particular, moments, mode, quantiles, order statistics, entropy, inequality measures and stress-strength parameter have been investigated extensively. To estimate the parameters, maximum likelihood estimation (MLE) is discussed. The model superiority is verified through two real datasets.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Powered Inverse Rayleigh Distribution Using DUS Transformation\",\"authors\":\"M. I. Khan, A. Mustafa\",\"doi\":\"10.28924/2291-8639-21-2023-61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article reports an extension of powered inverse Rayleigh distribution via DUS transformation, named DUS-Powered Inverse Rayleigh (DUS-PIR) distribution. Some statistical properties of suggested distribution in particular, moments, mode, quantiles, order statistics, entropy, inequality measures and stress-strength parameter have been investigated extensively. To estimate the parameters, maximum likelihood estimation (MLE) is discussed. The model superiority is verified through two real datasets.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-21-2023-61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文通过DUS变换对幂逆瑞利分布进行了扩展,称为DUS幂逆瑞利(DUS-PIR)分布。建议分布的一些统计特性,特别是矩、模、分位数、阶统计量、熵、不等式测度和应力强度参数,已经得到了广泛的研究。为了估计参数,讨论了最大似然估计(MLE)。通过两个真实数据集验证了模型的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Powered Inverse Rayleigh Distribution Using DUS Transformation
This article reports an extension of powered inverse Rayleigh distribution via DUS transformation, named DUS-Powered Inverse Rayleigh (DUS-PIR) distribution. Some statistical properties of suggested distribution in particular, moments, mode, quantiles, order statistics, entropy, inequality measures and stress-strength parameter have been investigated extensively. To estimate the parameters, maximum likelihood estimation (MLE) is discussed. The model superiority is verified through two real datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信