基于梯度、纹理驱动的动态直方图均衡化医学图像增强

Q4 Biochemistry, Genetics and Molecular Biology
H. N. Vidyasaraswathi, M. C. Hanumantharaju
{"title":"基于梯度、纹理驱动的动态直方图均衡化医学图像增强","authors":"H. N. Vidyasaraswathi, M. C. Hanumantharaju","doi":"10.46300/91011.2021.15.36","DOIUrl":null,"url":null,"abstract":"In many clinical diagnostic measurements, medical images play some significant role but often suffer from various types of noise and low-luminance, which causes some notable changes in overall system accuracy with misdiagnosis rate. To improve the visual appearance of object regions in medical images, image enhancement techniques are used as potential pre-processing techniques. Due to its simplicity and easiness of implementation, histogram equalization is widely preferred in many applications. But due to its mapping function based image transformation during enhancement process affect the biomedical patterns which are essential for diagnosis. To mitigate these issues in medical images, a new method based on gradient computations and Texture Driven based Dynamic histogram equalization (GTDDHE) is accomplished to increase the visual perception. The spatial texture pattern is also included to ensure the texture retention and associated control over its variations during histogram modifications. Experimental results on MRI, CT images, eyes images from medical image datasets and quantitative analysis by PSNR, structural similarity index measurement (SSIM), information entropy (IE) and validated that the proposed method offers improved quality with maximum retention of biomedical patterns across all types of medical images.","PeriodicalId":53488,"journal":{"name":"International Journal of Biology and Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient, Texture Driven Based Dynamic-Histogram Equalization For Medical Image Enhancement\",\"authors\":\"H. N. Vidyasaraswathi, M. C. Hanumantharaju\",\"doi\":\"10.46300/91011.2021.15.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many clinical diagnostic measurements, medical images play some significant role but often suffer from various types of noise and low-luminance, which causes some notable changes in overall system accuracy with misdiagnosis rate. To improve the visual appearance of object regions in medical images, image enhancement techniques are used as potential pre-processing techniques. Due to its simplicity and easiness of implementation, histogram equalization is widely preferred in many applications. But due to its mapping function based image transformation during enhancement process affect the biomedical patterns which are essential for diagnosis. To mitigate these issues in medical images, a new method based on gradient computations and Texture Driven based Dynamic histogram equalization (GTDDHE) is accomplished to increase the visual perception. The spatial texture pattern is also included to ensure the texture retention and associated control over its variations during histogram modifications. Experimental results on MRI, CT images, eyes images from medical image datasets and quantitative analysis by PSNR, structural similarity index measurement (SSIM), information entropy (IE) and validated that the proposed method offers improved quality with maximum retention of biomedical patterns across all types of medical images.\",\"PeriodicalId\":53488,\"journal\":{\"name\":\"International Journal of Biology and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biology and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46300/91011.2021.15.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biology and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/91011.2021.15.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

在许多临床诊断测量中,医学图像发挥着重要的作用,但往往存在各种类型的噪声和低亮度,导致系统整体准确率和误诊率发生了显著变化。为了改善医学图像中目标区域的视觉外观,图像增强技术被用作潜在的预处理技术。直方图均衡由于其简单易实现,在许多应用中被广泛采用。但由于其基于映射函数的图像变换在增强过程中会影响对诊断至关重要的生物医学模式。为了缓解医学图像中的这些问题,提出了一种基于梯度计算和纹理驱动的动态直方图均衡化(GTDDHE)的新方法来提高视觉感知。空间纹理模式也包括在直方图修改过程中,以确保纹理保留和对其变化的相关控制。对医学图像数据集中的MRI、CT图像、眼睛图像进行实验,并通过PSNR、结构相似指数测量(SSIM)、信息熵(IE)进行定量分析,验证了该方法在所有类型的医学图像中提供了更高的质量,最大限度地保留了生物医学模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gradient, Texture Driven Based Dynamic-Histogram Equalization For Medical Image Enhancement
In many clinical diagnostic measurements, medical images play some significant role but often suffer from various types of noise and low-luminance, which causes some notable changes in overall system accuracy with misdiagnosis rate. To improve the visual appearance of object regions in medical images, image enhancement techniques are used as potential pre-processing techniques. Due to its simplicity and easiness of implementation, histogram equalization is widely preferred in many applications. But due to its mapping function based image transformation during enhancement process affect the biomedical patterns which are essential for diagnosis. To mitigate these issues in medical images, a new method based on gradient computations and Texture Driven based Dynamic histogram equalization (GTDDHE) is accomplished to increase the visual perception. The spatial texture pattern is also included to ensure the texture retention and associated control over its variations during histogram modifications. Experimental results on MRI, CT images, eyes images from medical image datasets and quantitative analysis by PSNR, structural similarity index measurement (SSIM), information entropy (IE) and validated that the proposed method offers improved quality with maximum retention of biomedical patterns across all types of medical images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Biology and Biomedical Engineering
International Journal of Biology and Biomedical Engineering Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
自引率
0.00%
发文量
42
期刊介绍: Topics: Molecular Dynamics, Biochemistry, Biophysics, Quantum Chemistry, Molecular Biology, Cell Biology, Immunology, Neurophysiology, Genetics, Population Dynamics, Dynamics of Diseases, Bioecology, Epidemiology, Social Dynamics, PhotoBiology, PhotoChemistry, Plant Biology, Microbiology, Immunology, Bioinformatics, Signal Transduction, Environmental Systems, Psychological and Cognitive Systems, Pattern Formation, Evolution, Game Theory and Adaptive Dynamics, Bioengineering, Biotechnolgies, Medical Imaging, Medical Signal Processing, Feedback Control in Biology and Chemistry, Fluid Mechanics and Applications in Biomedicine, Space Medicine and Biology, Nuclear Biology and Medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信