两个非线性发展方程的闭型波解

A. Hossain, M. Akbar, M. Azad
{"title":"两个非线性发展方程的闭型波解","authors":"A. Hossain, M. Akbar, M. Azad","doi":"10.1080/23311940.2017.1396948","DOIUrl":null,"url":null,"abstract":"Abstract The exploration of closed form wave solutions of nonlinear evolution equations (NLEEs) is an important research area in the field of physical sciences and engineering. In this article, we investigate closed form wave solution of two nonlinear equations, namely, the time regularized long wave equation and the (2 + 1)-dimensional nonlinear Schrodinger equation by the modified simple equation method. These equations play significant role in nonlinear sciences. The solutions are obtained in explicit form of the variables in the considered equations. The derived solutions are revealed in the form of exponential and trigonometric functions including solitary and periodic solutions. It is shown that the method is effective and an essential mathematical tool for constructing the closed form wave solutions of NLEEs in mathematical physics.","PeriodicalId":43050,"journal":{"name":"Cogent Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23311940.2017.1396948","citationCount":"6","resultStr":"{\"title\":\"Closed form wave solutions of two nonlinear evolution equations\",\"authors\":\"A. Hossain, M. Akbar, M. Azad\",\"doi\":\"10.1080/23311940.2017.1396948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The exploration of closed form wave solutions of nonlinear evolution equations (NLEEs) is an important research area in the field of physical sciences and engineering. In this article, we investigate closed form wave solution of two nonlinear equations, namely, the time regularized long wave equation and the (2 + 1)-dimensional nonlinear Schrodinger equation by the modified simple equation method. These equations play significant role in nonlinear sciences. The solutions are obtained in explicit form of the variables in the considered equations. The derived solutions are revealed in the form of exponential and trigonometric functions including solitary and periodic solutions. It is shown that the method is effective and an essential mathematical tool for constructing the closed form wave solutions of NLEEs in mathematical physics.\",\"PeriodicalId\":43050,\"journal\":{\"name\":\"Cogent Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23311940.2017.1396948\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23311940.2017.1396948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311940.2017.1396948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

摘要探索非线性演化方程的闭合波解是物理科学和工程领域的一个重要研究领域。本文用修正的简单方程方法研究了两个非线性方程的闭式波解,即时间正则长波方程和(2+1)维非线性薛定谔方程。这些方程在非线性科学中发挥着重要作用。解是以所考虑的方程中变量的显式形式获得的。导出的解以指数函数和三角函数的形式显示,包括孤立解和周期解。结果表明,该方法是有效的,是构造数学物理中NLEE闭合波解的重要数学工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Closed form wave solutions of two nonlinear evolution equations
Abstract The exploration of closed form wave solutions of nonlinear evolution equations (NLEEs) is an important research area in the field of physical sciences and engineering. In this article, we investigate closed form wave solution of two nonlinear equations, namely, the time regularized long wave equation and the (2 + 1)-dimensional nonlinear Schrodinger equation by the modified simple equation method. These equations play significant role in nonlinear sciences. The solutions are obtained in explicit form of the variables in the considered equations. The derived solutions are revealed in the form of exponential and trigonometric functions including solitary and periodic solutions. It is shown that the method is effective and an essential mathematical tool for constructing the closed form wave solutions of NLEEs in mathematical physics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cogent Physics
Cogent Physics PHYSICS, MULTIDISCIPLINARY-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信