光滑厄米曲面上的有理曲线

IF 0.5 4区 数学 Q3 MATHEMATICS
Norifumi Ojiro
{"title":"光滑厄米曲面上的有理曲线","authors":"Norifumi Ojiro","doi":"10.32917/hmj/1554516042","DOIUrl":null,"url":null,"abstract":"In characteristic $p>0$ and for $q$ a power of $p$, we compute the number of nonplanar rational curves of arbitrary degrees on a smooth Hermitian surface of degree $q+1$ under the assumption that the curves have a parametrization given by polynomials with at most $4$ terms. It is shown that a smooth Hermitian cubic surface contains infinitely many rational curves of degree $3$ and $6$. On the other hand, for all other cases the numbers of curves are finite and they are exactly determined. Further such rational curves are given explicitly up to projective isomorphism and their smoothness are checked.","PeriodicalId":55054,"journal":{"name":"Hiroshima Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Rational curves on a smooth Hermitian surface\",\"authors\":\"Norifumi Ojiro\",\"doi\":\"10.32917/hmj/1554516042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In characteristic $p>0$ and for $q$ a power of $p$, we compute the number of nonplanar rational curves of arbitrary degrees on a smooth Hermitian surface of degree $q+1$ under the assumption that the curves have a parametrization given by polynomials with at most $4$ terms. It is shown that a smooth Hermitian cubic surface contains infinitely many rational curves of degree $3$ and $6$. On the other hand, for all other cases the numbers of curves are finite and they are exactly determined. Further such rational curves are given explicitly up to projective isomorphism and their smoothness are checked.\",\"PeriodicalId\":55054,\"journal\":{\"name\":\"Hiroshima Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hiroshima Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.32917/hmj/1554516042\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hiroshima Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/hmj/1554516042","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

在特征$p> $和$q$ p$的1次幂的情况下,我们在$q+1$的光滑埃尔米曲面上计算了任意次的非平面有理曲线的数目,假设这些曲线的参数化是由至多$4$项的多项式给出的。证明了一个光滑的厄米三次曲面包含无限多条$3$和$6$有理曲线。另一方面,对于所有其他情况,曲线的数量是有限的,它们是精确确定的。进一步给出了这类有理曲线的投影同构性,并对其光滑性进行了检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational curves on a smooth Hermitian surface
In characteristic $p>0$ and for $q$ a power of $p$, we compute the number of nonplanar rational curves of arbitrary degrees on a smooth Hermitian surface of degree $q+1$ under the assumption that the curves have a parametrization given by polynomials with at most $4$ terms. It is shown that a smooth Hermitian cubic surface contains infinitely many rational curves of degree $3$ and $6$. On the other hand, for all other cases the numbers of curves are finite and they are exactly determined. Further such rational curves are given explicitly up to projective isomorphism and their smoothness are checked.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Hiroshima Mathematical Journal (HMJ) is a continuation of Journal of Science of the Hiroshima University, Series A, Vol. 1 - 24 (1930 - 1960), and Journal of Science of the Hiroshima University, Series A - I , Vol. 25 - 34 (1961 - 1970). Starting with Volume 4 (1974), each volume of HMJ consists of three numbers annually. This journal publishes original papers in pure and applied mathematics. HMJ is an (electronically) open access journal from Volume 36, Number 1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信