基于遗传规划的高强混凝土抗压强度预测公式

IF 1 Q4 ENGINEERING, CIVIL
G. Abdollahzadeh, E. Jahani, Zahra Kashir
{"title":"基于遗传规划的高强混凝土抗压强度预测公式","authors":"G. Abdollahzadeh, E. Jahani, Zahra Kashir","doi":"10.7508/CEIJ.2017.02.001","DOIUrl":null,"url":null,"abstract":"This study introduces, two models based on Gene Expression Programming (GEP) to predict compressive strength of high strength concrete (HSC). Composition of HSC was assumed simplified, as a mixture of six components (cement, silica fume, super-plastisizer, water, fine aggregate and coarse aggregate). The 28-day compressive strength value was considered the target of the prediction.  Data on 159 mixes were taken from various publications. The system was trained based on 80% training pairs chosen randomly from the data set and then tested using remaining 20% samples. Therefore it can be proven and illustrated that the GEP is a strong technique for the prediction of compressive strength amounts of HSC concerning to the outcomes of the training and testing phases compared with experimental outcomes illustrate that the.","PeriodicalId":43959,"journal":{"name":"Civil Engineering Infrastructures Journal-CEIJ","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Genetic Programming Based Formulation to Predict Compressive Strength of High Strength Concrete\",\"authors\":\"G. Abdollahzadeh, E. Jahani, Zahra Kashir\",\"doi\":\"10.7508/CEIJ.2017.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces, two models based on Gene Expression Programming (GEP) to predict compressive strength of high strength concrete (HSC). Composition of HSC was assumed simplified, as a mixture of six components (cement, silica fume, super-plastisizer, water, fine aggregate and coarse aggregate). The 28-day compressive strength value was considered the target of the prediction.  Data on 159 mixes were taken from various publications. The system was trained based on 80% training pairs chosen randomly from the data set and then tested using remaining 20% samples. Therefore it can be proven and illustrated that the GEP is a strong technique for the prediction of compressive strength amounts of HSC concerning to the outcomes of the training and testing phases compared with experimental outcomes illustrate that the.\",\"PeriodicalId\":43959,\"journal\":{\"name\":\"Civil Engineering Infrastructures Journal-CEIJ\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil Engineering Infrastructures Journal-CEIJ\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7508/CEIJ.2017.02.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Infrastructures Journal-CEIJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7508/CEIJ.2017.02.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 12

摘要

介绍了两种基于基因表达式编程(GEP)的高强混凝土抗压强度预测模型。假定HSC的组成简化为六组分(水泥、硅灰、超塑剂、水、细骨料和粗骨料)的混合物。28天的抗压强度值被认为是预测的目标。159种混合物的数据来自不同的出版物。系统基于从数据集中随机选择的80%的训练对进行训练,然后使用剩余的20%样本进行测试。因此,可以证明和说明GEP是一种强有力的技术,用于预测HSC的抗压强度量,涉及到训练和测试阶段的结果,与实验结果相比,说明GEP是一种有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic Programming Based Formulation to Predict Compressive Strength of High Strength Concrete
This study introduces, two models based on Gene Expression Programming (GEP) to predict compressive strength of high strength concrete (HSC). Composition of HSC was assumed simplified, as a mixture of six components (cement, silica fume, super-plastisizer, water, fine aggregate and coarse aggregate). The 28-day compressive strength value was considered the target of the prediction.  Data on 159 mixes were taken from various publications. The system was trained based on 80% training pairs chosen randomly from the data set and then tested using remaining 20% samples. Therefore it can be proven and illustrated that the GEP is a strong technique for the prediction of compressive strength amounts of HSC concerning to the outcomes of the training and testing phases compared with experimental outcomes illustrate that the.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
60.00%
发文量
0
审稿时长
47 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信