基于生理的人类血液稳态剪切流变参数化的机器学习:血液统计学的贡献

IF 2.3 3区 工程技术 Q2 MECHANICS
Sean Farrington, Soham Jariwala, Matt Armstrong, Ethan Nigro, Norman J. Wagner, Antony N. Beris
{"title":"基于生理的人类血液稳态剪切流变参数化的机器学习:血液统计学的贡献","authors":"Sean Farrington,&nbsp;Soham Jariwala,&nbsp;Matt Armstrong,&nbsp;Ethan Nigro,&nbsp;Norman J. Wagner,&nbsp;Antony N. Beris","doi":"10.1007/s00397-023-01402-2","DOIUrl":null,"url":null,"abstract":"<div><p>Hemorheology is the study of blood flow and the mechanical stresses and kinematics involved. The Casson constitutive equation is a popular and simple model used to describe the steady shear rheology of blood, with only two parameters that specify an infinite shear viscosity and a yield stress that depend on blood physiology. Previous literature has identified hematocrit and fibrinogen concentration as the two most important physiological factors that affect blood flow, but previous parameterizations of the Casson model may not be reliable due to the use of non-standardized data sets. This study uses machine learning and the largest standardized dataset to improve the parameterization of the Casson model with respect to hematocrit and fibrinogen concentration for healthy individuals. The study also employs machine learning to identify a potential additional factor, the mean corpuscular hemoglobin (MCH), that may affect blood rheology. The proposed approach demonstrates the potential for machine learning to improve the connection between physiology and blood rheology with possible implications in cardiovascular diagnostics.</p></div>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"62 10","pages":"491 - 506"},"PeriodicalIF":2.3000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00397-023-01402-2.pdf","citationCount":"2","resultStr":"{\"title\":\"Physiology-based parameterization of human blood steady shear rheology via machine learning: a hemostatistics contribution\",\"authors\":\"Sean Farrington,&nbsp;Soham Jariwala,&nbsp;Matt Armstrong,&nbsp;Ethan Nigro,&nbsp;Norman J. Wagner,&nbsp;Antony N. Beris\",\"doi\":\"10.1007/s00397-023-01402-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hemorheology is the study of blood flow and the mechanical stresses and kinematics involved. The Casson constitutive equation is a popular and simple model used to describe the steady shear rheology of blood, with only two parameters that specify an infinite shear viscosity and a yield stress that depend on blood physiology. Previous literature has identified hematocrit and fibrinogen concentration as the two most important physiological factors that affect blood flow, but previous parameterizations of the Casson model may not be reliable due to the use of non-standardized data sets. This study uses machine learning and the largest standardized dataset to improve the parameterization of the Casson model with respect to hematocrit and fibrinogen concentration for healthy individuals. The study also employs machine learning to identify a potential additional factor, the mean corpuscular hemoglobin (MCH), that may affect blood rheology. The proposed approach demonstrates the potential for machine learning to improve the connection between physiology and blood rheology with possible implications in cardiovascular diagnostics.</p></div>\",\"PeriodicalId\":755,\"journal\":{\"name\":\"Rheologica Acta\",\"volume\":\"62 10\",\"pages\":\"491 - 506\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00397-023-01402-2.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rheologica Acta\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00397-023-01402-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rheologica Acta","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00397-023-01402-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2

摘要

血液流变学是研究血液流动及其所涉及的机械应力和运动学。Casson本构方程是一种流行而简单的模型,用于描述血液的稳定剪切流变,只有两个参数指定无限剪切粘度和屈服应力取决于血液生理学。先前的文献已经确定红细胞压积和纤维蛋白原浓度是影响血流的两个最重要的生理因素,但由于使用非标准化的数据集,Casson模型的先前参数化可能不可靠。本研究使用机器学习和最大的标准化数据集来改进健康个体关于红细胞压积和纤维蛋白原浓度的Casson模型的参数化。该研究还使用机器学习来识别可能影响血液流变学的潜在附加因素,即平均红细胞血红蛋白(MCH)。提出的方法证明了机器学习在改善生理学和血液流变学之间的联系方面的潜力,并可能对心血管诊断产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Physiology-based parameterization of human blood steady shear rheology via machine learning: a hemostatistics contribution

Physiology-based parameterization of human blood steady shear rheology via machine learning: a hemostatistics contribution

Hemorheology is the study of blood flow and the mechanical stresses and kinematics involved. The Casson constitutive equation is a popular and simple model used to describe the steady shear rheology of blood, with only two parameters that specify an infinite shear viscosity and a yield stress that depend on blood physiology. Previous literature has identified hematocrit and fibrinogen concentration as the two most important physiological factors that affect blood flow, but previous parameterizations of the Casson model may not be reliable due to the use of non-standardized data sets. This study uses machine learning and the largest standardized dataset to improve the parameterization of the Casson model with respect to hematocrit and fibrinogen concentration for healthy individuals. The study also employs machine learning to identify a potential additional factor, the mean corpuscular hemoglobin (MCH), that may affect blood rheology. The proposed approach demonstrates the potential for machine learning to improve the connection between physiology and blood rheology with possible implications in cardiovascular diagnostics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rheologica Acta
Rheologica Acta 物理-力学
CiteScore
4.60
自引率
8.70%
发文量
55
审稿时长
3 months
期刊介绍: "Rheologica Acta is the official journal of The European Society of Rheology. The aim of the journal is to advance the science of rheology, by publishing high quality peer reviewed articles, invited reviews and peer reviewed short communications. The Scope of Rheologica Acta includes: - Advances in rheometrical and rheo-physical techniques, rheo-optics, microrheology - Rheology of soft matter systems, including polymer melts and solutions, colloidal dispersions, cement, ceramics, glasses, gels, emulsions, surfactant systems, liquid crystals, biomaterials and food. - Rheology of Solids, chemo-rheology - Electro and magnetorheology - Theory of rheology - Non-Newtonian fluid mechanics, complex fluids in microfluidic devices and flow instabilities - Interfacial rheology Rheologica Acta aims to publish papers which represent a substantial advance in the field, mere data reports or incremental work will not be considered. Priority will be given to papers that are methodological in nature and are beneficial to a wide range of material classes. It should also be noted that the list of topics given above is meant to be representative, not exhaustive. The editors welcome feedback on the journal and suggestions for reviews and comments."
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信