推进AI/ML在先进光子源

Q3 Physics and Astronomy
C. Benmore, Tekin Bicer, M. Chan, Z. Di, Dogˇa Gürsoy, In-hui Hwang, N. Kuklev, Dergan Lin, Zhengchun Liu, I. Lobach, Zhi-wei Qiao, L. Rebuffi, Hemant Sharma, Xianbo Shi, Cheng-wei Sun, Yudong Yao, T. Zhou, A. Sandy, A. Miceli, Yin-e Sun, N. Schwarz, M. Cherukara
{"title":"推进AI/ML在先进光子源","authors":"C. Benmore, Tekin Bicer, M. Chan, Z. Di, Dogˇa Gürsoy, In-hui Hwang, N. Kuklev, Dergan Lin, Zhengchun Liu, I. Lobach, Zhi-wei Qiao, L. Rebuffi, Hemant Sharma, Xianbo Shi, Cheng-wei Sun, Yudong Yao, T. Zhou, A. Sandy, A. Miceli, Yin-e Sun, N. Schwarz, M. Cherukara","doi":"10.1080/08940886.2022.2112500","DOIUrl":null,"url":null,"abstract":"To address this, we have designed a fully integrated digital twin environment for simulation and debugging based on experimentally collected data. We have been able to show that incorporating time and physics-based biasing can improve long-term stability and robustness sufficiently for long-term use. Resulting ML libraries were interfaced with a Tcl/Tk production control system via an SDDS-compatible interface, which allowed for easy integration and immediate operational use. Experimental benchmarks have demonstrated new methods to be faster than existing ones in recovering full performance of the accelerator after a perturbation.","PeriodicalId":39020,"journal":{"name":"Synchrotron Radiation News","volume":"35 1","pages":"28 - 35"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Advancing AI/ML at the Advanced Photon Source\",\"authors\":\"C. Benmore, Tekin Bicer, M. Chan, Z. Di, Dogˇa Gürsoy, In-hui Hwang, N. Kuklev, Dergan Lin, Zhengchun Liu, I. Lobach, Zhi-wei Qiao, L. Rebuffi, Hemant Sharma, Xianbo Shi, Cheng-wei Sun, Yudong Yao, T. Zhou, A. Sandy, A. Miceli, Yin-e Sun, N. Schwarz, M. Cherukara\",\"doi\":\"10.1080/08940886.2022.2112500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address this, we have designed a fully integrated digital twin environment for simulation and debugging based on experimentally collected data. We have been able to show that incorporating time and physics-based biasing can improve long-term stability and robustness sufficiently for long-term use. Resulting ML libraries were interfaced with a Tcl/Tk production control system via an SDDS-compatible interface, which allowed for easy integration and immediate operational use. Experimental benchmarks have demonstrated new methods to be faster than existing ones in recovering full performance of the accelerator after a perturbation.\",\"PeriodicalId\":39020,\"journal\":{\"name\":\"Synchrotron Radiation News\",\"volume\":\"35 1\",\"pages\":\"28 - 35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synchrotron Radiation News\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/08940886.2022.2112500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synchrotron Radiation News","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/08940886.2022.2112500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 2

摘要

为了解决这个问题,我们设计了一个完全集成的数字孪生环境,用于基于实验收集的数据的仿真和调试。我们已经能够证明,结合时间和基于物理的偏置可以提高长期使用的长期稳定性和鲁棒性。生成的ML库通过与sdds兼容的接口与Tcl/Tk生产控制系统进行接口,这使得易于集成和立即操作使用。实验基准表明,新方法比现有方法在扰动后恢复加速器的全部性能要快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing AI/ML at the Advanced Photon Source
To address this, we have designed a fully integrated digital twin environment for simulation and debugging based on experimentally collected data. We have been able to show that incorporating time and physics-based biasing can improve long-term stability and robustness sufficiently for long-term use. Resulting ML libraries were interfaced with a Tcl/Tk production control system via an SDDS-compatible interface, which allowed for easy integration and immediate operational use. Experimental benchmarks have demonstrated new methods to be faster than existing ones in recovering full performance of the accelerator after a perturbation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Synchrotron Radiation News
Synchrotron Radiation News Physics and Astronomy-Nuclear and High Energy Physics
CiteScore
1.30
自引率
0.00%
发文量
46
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信