{"title":"古环境驱动的壳类生物碎屑混合湖相页岩有机质成藏——以四川盆地侏罗系大安寨段为例","authors":"Wenzhi Lei , Dongxia Chen , Ziyi Liu , Ming Cheng","doi":"10.1016/j.petrol.2022.111178","DOIUrl":null,"url":null,"abstract":"<div><p>The sedimentary environment<span> governs the depositional processes<span><span><span>, ecological environments, and hydrodynamics, which affect the accumulation of organic-rich sediments. Some particular issues are unsolved about the organic matter accumulations of lacustrine shale mixed with shell bioclasts due to their alternating deposition. Freshwater bivalve remains are a familiar constituent of the Da'anzhai lacustrine calcareous shale, which indicates enhanced activities of benthic organisms. Under this background, favorable environmental conditions for the deposition and preservation of abundant organic matter may be different from classical models. </span>Total organic carbon and elemental concentration analyses of lacustrine calcareous shale samples from the Jurassic Da'anzhai Member in the Sichuan Basin were carried out to reconstruct the </span>paleoenvironment<span> and reveal the organic enrichment mechanism. Results show that the samples are notably enriched in strontium<span><span><span>, phosphorus and biogenic calcium (indicated by excess calcium concentrations) and reveal the mass death event of benthic organisms (including freshwater mussels and gastropods) in paleolakes under the control of climatic transformation. Such enrichment strongly supports the hypothesis that CaO is considered to be a paleoproductivity proxy to some extent. The paleolake was dominated by a warm and humid climate and rapid </span>sedimentation rates and experienced intense chemical weathering, which are characteristic of </span>freshwater input<span> and a high flux of detrital fractions. The variations in the redox state and paleoproductivity are due to climatic shifts, hydrographic restrictions and biological behavior. Furthermore, the organic matter was enriched during both oxygenated and oxygen-deficient conditions. The combination of high sedimentation rates and high sinking influxes of particulate organic carbon reduced the chances of decomposition and thereby facilitated the efficiency of organic matter accumulation in an oxic environment. The low degree of organic matter degradation, moderate sedimentation rates and enhanced phosphorus recycling were responsible for the organic carbon accumulation and preservation in sediments for dysoxic bottom conditions.</span></span></span></span></span></p></div>","PeriodicalId":16717,"journal":{"name":"Journal of Petroleum Science and Engineering","volume":"220 ","pages":"Article 111178"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Paleoenvironment-driven organic matter accumulation in lacustrine shale mixed with shell bioclasts: A case study from the Jurassic Da'anzhai member, Sichuan Basin (China)\",\"authors\":\"Wenzhi Lei , Dongxia Chen , Ziyi Liu , Ming Cheng\",\"doi\":\"10.1016/j.petrol.2022.111178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The sedimentary environment<span> governs the depositional processes<span><span><span>, ecological environments, and hydrodynamics, which affect the accumulation of organic-rich sediments. Some particular issues are unsolved about the organic matter accumulations of lacustrine shale mixed with shell bioclasts due to their alternating deposition. Freshwater bivalve remains are a familiar constituent of the Da'anzhai lacustrine calcareous shale, which indicates enhanced activities of benthic organisms. Under this background, favorable environmental conditions for the deposition and preservation of abundant organic matter may be different from classical models. </span>Total organic carbon and elemental concentration analyses of lacustrine calcareous shale samples from the Jurassic Da'anzhai Member in the Sichuan Basin were carried out to reconstruct the </span>paleoenvironment<span> and reveal the organic enrichment mechanism. Results show that the samples are notably enriched in strontium<span><span><span>, phosphorus and biogenic calcium (indicated by excess calcium concentrations) and reveal the mass death event of benthic organisms (including freshwater mussels and gastropods) in paleolakes under the control of climatic transformation. Such enrichment strongly supports the hypothesis that CaO is considered to be a paleoproductivity proxy to some extent. The paleolake was dominated by a warm and humid climate and rapid </span>sedimentation rates and experienced intense chemical weathering, which are characteristic of </span>freshwater input<span> and a high flux of detrital fractions. The variations in the redox state and paleoproductivity are due to climatic shifts, hydrographic restrictions and biological behavior. Furthermore, the organic matter was enriched during both oxygenated and oxygen-deficient conditions. The combination of high sedimentation rates and high sinking influxes of particulate organic carbon reduced the chances of decomposition and thereby facilitated the efficiency of organic matter accumulation in an oxic environment. The low degree of organic matter degradation, moderate sedimentation rates and enhanced phosphorus recycling were responsible for the organic carbon accumulation and preservation in sediments for dysoxic bottom conditions.</span></span></span></span></span></p></div>\",\"PeriodicalId\":16717,\"journal\":{\"name\":\"Journal of Petroleum Science and Engineering\",\"volume\":\"220 \",\"pages\":\"Article 111178\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920410522010300\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920410522010300","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Paleoenvironment-driven organic matter accumulation in lacustrine shale mixed with shell bioclasts: A case study from the Jurassic Da'anzhai member, Sichuan Basin (China)
The sedimentary environment governs the depositional processes, ecological environments, and hydrodynamics, which affect the accumulation of organic-rich sediments. Some particular issues are unsolved about the organic matter accumulations of lacustrine shale mixed with shell bioclasts due to their alternating deposition. Freshwater bivalve remains are a familiar constituent of the Da'anzhai lacustrine calcareous shale, which indicates enhanced activities of benthic organisms. Under this background, favorable environmental conditions for the deposition and preservation of abundant organic matter may be different from classical models. Total organic carbon and elemental concentration analyses of lacustrine calcareous shale samples from the Jurassic Da'anzhai Member in the Sichuan Basin were carried out to reconstruct the paleoenvironment and reveal the organic enrichment mechanism. Results show that the samples are notably enriched in strontium, phosphorus and biogenic calcium (indicated by excess calcium concentrations) and reveal the mass death event of benthic organisms (including freshwater mussels and gastropods) in paleolakes under the control of climatic transformation. Such enrichment strongly supports the hypothesis that CaO is considered to be a paleoproductivity proxy to some extent. The paleolake was dominated by a warm and humid climate and rapid sedimentation rates and experienced intense chemical weathering, which are characteristic of freshwater input and a high flux of detrital fractions. The variations in the redox state and paleoproductivity are due to climatic shifts, hydrographic restrictions and biological behavior. Furthermore, the organic matter was enriched during both oxygenated and oxygen-deficient conditions. The combination of high sedimentation rates and high sinking influxes of particulate organic carbon reduced the chances of decomposition and thereby facilitated the efficiency of organic matter accumulation in an oxic environment. The low degree of organic matter degradation, moderate sedimentation rates and enhanced phosphorus recycling were responsible for the organic carbon accumulation and preservation in sediments for dysoxic bottom conditions.
期刊介绍:
The objective of the Journal of Petroleum Science and Engineering is to bridge the gap between the engineering, the geology and the science of petroleum and natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of petroleum engineering, natural gas engineering and petroleum (natural gas) geology. An attempt is made in all issues to balance the subject matter and to appeal to a broad readership.
The Journal of Petroleum Science and Engineering covers the fields of petroleum (and natural gas) exploration, production and flow in its broadest possible sense. Topics include: origin and accumulation of petroleum and natural gas; petroleum geochemistry; reservoir engineering; reservoir simulation; rock mechanics; petrophysics; pore-level phenomena; well logging, testing and evaluation; mathematical modelling; enhanced oil and gas recovery; petroleum geology; compaction/diagenesis; petroleum economics; drilling and drilling fluids; thermodynamics and phase behavior; fluid mechanics; multi-phase flow in porous media; production engineering; formation evaluation; exploration methods; CO2 Sequestration in geological formations/sub-surface; management and development of unconventional resources such as heavy oil and bitumen, tight oil and liquid rich shales.