{"title":"非对称和不规则平面钢筋混凝土建筑在双轴地震激励下的多模态推覆过程评价","authors":"G. Manoukas","doi":"10.1504/IJSTRUCTE.2019.10022936","DOIUrl":null,"url":null,"abstract":"In the present paper, a recently developed multimode pushover procedure is evaluated for non-regular in plan systems. The procedure is applicable to asymmetric in plan buildings under concurrent action of two horizontal seismic components and its main advantage is that it does not require independent analysis in two orthogonal directions. Thus, the use of simplified directional combination formulae, which is not valid in the nonlinear range, is avoided. The preliminary evaluation of the proposed methodology led to quite satisfactory results. However, the studies conducted up to date are limited to regular buildings. Hence, in the present study, the procedure is applied to four asymmetric and non-regular in plan reinforced concrete buildings. The values of selected response quantities are compared to those resulting from a conventional pushover analysis variant as well as from nonlinear dynamic analysis. The whole evaluation study leads to the derivation of useful conclusions.","PeriodicalId":38785,"journal":{"name":"International Journal of Structural Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation of a multimode pushover procedure for asymmetric and non-regular in plan reinforced concrete buildings under biaxial seismic excitation\",\"authors\":\"G. Manoukas\",\"doi\":\"10.1504/IJSTRUCTE.2019.10022936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, a recently developed multimode pushover procedure is evaluated for non-regular in plan systems. The procedure is applicable to asymmetric in plan buildings under concurrent action of two horizontal seismic components and its main advantage is that it does not require independent analysis in two orthogonal directions. Thus, the use of simplified directional combination formulae, which is not valid in the nonlinear range, is avoided. The preliminary evaluation of the proposed methodology led to quite satisfactory results. However, the studies conducted up to date are limited to regular buildings. Hence, in the present study, the procedure is applied to four asymmetric and non-regular in plan reinforced concrete buildings. The values of selected response quantities are compared to those resulting from a conventional pushover analysis variant as well as from nonlinear dynamic analysis. The whole evaluation study leads to the derivation of useful conclusions.\",\"PeriodicalId\":38785,\"journal\":{\"name\":\"International Journal of Structural Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJSTRUCTE.2019.10022936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSTRUCTE.2019.10022936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Evaluation of a multimode pushover procedure for asymmetric and non-regular in plan reinforced concrete buildings under biaxial seismic excitation
In the present paper, a recently developed multimode pushover procedure is evaluated for non-regular in plan systems. The procedure is applicable to asymmetric in plan buildings under concurrent action of two horizontal seismic components and its main advantage is that it does not require independent analysis in two orthogonal directions. Thus, the use of simplified directional combination formulae, which is not valid in the nonlinear range, is avoided. The preliminary evaluation of the proposed methodology led to quite satisfactory results. However, the studies conducted up to date are limited to regular buildings. Hence, in the present study, the procedure is applied to four asymmetric and non-regular in plan reinforced concrete buildings. The values of selected response quantities are compared to those resulting from a conventional pushover analysis variant as well as from nonlinear dynamic analysis. The whole evaluation study leads to the derivation of useful conclusions.