考虑空间电荷和声子散射效应的基于物理的RTD模型

Q4 Engineering
Daniel R. Celino, Adelcio M de Souza, Caio Luiz Machado Pereira Plazas, R. Ragi, Murilo A Romero
{"title":"考虑空间电荷和声子散射效应的基于物理的RTD模型","authors":"Daniel R. Celino, Adelcio M de Souza, Caio Luiz Machado Pereira Plazas, R. Ragi, Murilo A Romero","doi":"10.29292/jics.v17i1.545","DOIUrl":null,"url":null,"abstract":"This paper presents a fully analytical model for the current-voltage (I–V) characteristics of Resonant Tunneling Diodes. Based on Tsu-Esaki formalism, we consider the full electrical potential distribution in the structure, including the space charge regions at the emitter and collector layers. In addition, we account for the scattering suffered by carriers when tunneling through the double-barrier region, as a function of the applied bias voltage. These considerations improve the accuracy of the proposed model when compared with other approaches while keeping it physics based and fully analytical. Finally, the model is validated with experimental and numericaldata, demonstrating its feasibility for applications in circuit simulation environments.","PeriodicalId":39974,"journal":{"name":"Journal of Integrated Circuits and Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Physics Based RTD Model Accounting for Space Charge and Phonon Scattering Effects\",\"authors\":\"Daniel R. Celino, Adelcio M de Souza, Caio Luiz Machado Pereira Plazas, R. Ragi, Murilo A Romero\",\"doi\":\"10.29292/jics.v17i1.545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a fully analytical model for the current-voltage (I–V) characteristics of Resonant Tunneling Diodes. Based on Tsu-Esaki formalism, we consider the full electrical potential distribution in the structure, including the space charge regions at the emitter and collector layers. In addition, we account for the scattering suffered by carriers when tunneling through the double-barrier region, as a function of the applied bias voltage. These considerations improve the accuracy of the proposed model when compared with other approaches while keeping it physics based and fully analytical. Finally, the model is validated with experimental and numericaldata, demonstrating its feasibility for applications in circuit simulation environments.\",\"PeriodicalId\":39974,\"journal\":{\"name\":\"Journal of Integrated Circuits and Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrated Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29292/jics.v17i1.545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrated Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29292/jics.v17i1.545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了谐振隧道二极管电流-电压(I–V)特性的全解析模型。基于Tsu Esaki形式,我们考虑了结构中的全电势分布,包括发射极和集电极层的空间电荷区。此外,我们考虑了载流子在隧穿双势垒区时所遭受的散射,作为所施加偏置电压的函数。与其他方法相比,这些考虑因素提高了所提出模型的准确性,同时保持了其物理基础和充分的分析性。最后,通过实验和数值数据对该模型进行了验证,证明了其在电路仿真环境中应用的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physics Based RTD Model Accounting for Space Charge and Phonon Scattering Effects
This paper presents a fully analytical model for the current-voltage (I–V) characteristics of Resonant Tunneling Diodes. Based on Tsu-Esaki formalism, we consider the full electrical potential distribution in the structure, including the space charge regions at the emitter and collector layers. In addition, we account for the scattering suffered by carriers when tunneling through the double-barrier region, as a function of the applied bias voltage. These considerations improve the accuracy of the proposed model when compared with other approaches while keeping it physics based and fully analytical. Finally, the model is validated with experimental and numericaldata, demonstrating its feasibility for applications in circuit simulation environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Integrated Circuits and Systems
Journal of Integrated Circuits and Systems Engineering-Electrical and Electronic Engineering
CiteScore
0.90
自引率
0.00%
发文量
39
期刊介绍: This journal will present state-of-art papers on Integrated Circuits and Systems. It is an effort of both Brazilian Microelectronics Society - SBMicro and Brazilian Computer Society - SBC to create a new scientific journal covering Process and Materials, Device and Characterization, Design, Test and CAD of Integrated Circuits and Systems. The Journal of Integrated Circuits and Systems is published through Special Issues on subjects to be defined by the Editorial Board. Special issues will publish selected papers from both Brazilian Societies annual conferences, SBCCI - Symposium on Integrated Circuits and Systems and SBMicro - Symposium on Microelectronics Technology and Devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信