一些曲线对的新推广

IF 0.4 Q4 MATHEMATICS
Oğuzhan Çeli̇k, M. Ozdemir
{"title":"一些曲线对的新推广","authors":"Oğuzhan Çeli̇k, M. Ozdemir","doi":"10.36890/iejg.1110327","DOIUrl":null,"url":null,"abstract":"In this study, we give a new curve pair that generalizes some of the famous pairs of curves as Bertrand and constant torsion curves. This curve pair is defined with the help of a vector obtained by the intersection of the osculating planes such that this vector makes the same angle $\\gamma$ with the tangents of the curves. We examine the relations between torsions and\ncurvatures of these curve mates. Also, We have seen that the unit quaternion corresponding to the rotation matrix between the Frenet vectors of the curves is $q=\\cos (\\theta/2)-\\mathbf{i}\\sin (\\theta/2)\\cos \\gamma -\\mathbf{j}\\sin (\\theta/2)\\sin \\gamma$, where $\\theta$ is the angle between the reciprocal binormals of the curves. Finally, we show in which specific case which well-known pairs of curves will be obtained.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new generalization of some curve pairs\",\"authors\":\"Oğuzhan Çeli̇k, M. Ozdemir\",\"doi\":\"10.36890/iejg.1110327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we give a new curve pair that generalizes some of the famous pairs of curves as Bertrand and constant torsion curves. This curve pair is defined with the help of a vector obtained by the intersection of the osculating planes such that this vector makes the same angle $\\\\gamma$ with the tangents of the curves. We examine the relations between torsions and\\ncurvatures of these curve mates. Also, We have seen that the unit quaternion corresponding to the rotation matrix between the Frenet vectors of the curves is $q=\\\\cos (\\\\theta/2)-\\\\mathbf{i}\\\\sin (\\\\theta/2)\\\\cos \\\\gamma -\\\\mathbf{j}\\\\sin (\\\\theta/2)\\\\sin \\\\gamma$, where $\\\\theta$ is the angle between the reciprocal binormals of the curves. Finally, we show in which specific case which well-known pairs of curves will be obtained.\",\"PeriodicalId\":43768,\"journal\":{\"name\":\"International Electronic Journal of Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36890/iejg.1110327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/iejg.1110327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们给出了一个新的曲线对,它将一些著名的曲线对推广为Bertrand和常扭曲线。该曲线对是在通过密切平面的相交获得的向量的帮助下定义的,使得该向量与曲线的切线形成相同的角度$\gamma$。我们研究了这些曲线伴侣的扭转和曲率之间的关系。此外,我们已经看到,与曲线的Frenet向量之间的旋转矩阵相对应的单位四元数是$q=\cos(\theta/2)-\mathbf{i}\sin(\theta/2)\cos\gamma-\mathf{j}\sin(\ theta/2)\sin\gamma$,其中$\theta$是曲线的倒数二范数之间的角度。最后,我们展示了在哪种特定情况下,将获得哪些众所周知的曲线对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new generalization of some curve pairs
In this study, we give a new curve pair that generalizes some of the famous pairs of curves as Bertrand and constant torsion curves. This curve pair is defined with the help of a vector obtained by the intersection of the osculating planes such that this vector makes the same angle $\gamma$ with the tangents of the curves. We examine the relations between torsions and curvatures of these curve mates. Also, We have seen that the unit quaternion corresponding to the rotation matrix between the Frenet vectors of the curves is $q=\cos (\theta/2)-\mathbf{i}\sin (\theta/2)\cos \gamma -\mathbf{j}\sin (\theta/2)\sin \gamma$, where $\theta$ is the angle between the reciprocal binormals of the curves. Finally, we show in which specific case which well-known pairs of curves will be obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
14.30%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信