{"title":"使用校准良好的零偏好先验解释p值和置信区间","authors":"M. Fay, M. Proschan, E. Brittain, R. Tiwari","doi":"10.1214/21-sts833","DOIUrl":null,"url":null,"abstract":"We propose well-calibrated null preference priors for use with one-sided hypothesis tests, such that resulting Bayesian and frequentist inferences agree. Null preference priors mean that they have nearly 100% of their prior belief in the null hypothesis, and well-calibrated priors mean that the resulting posterior beliefs in the alternative hypothesis are not overconfident. This formulation expands the class of problems giving Bayes-frequentist agreement to include problems involving discrete distributions such as binomial and negative binomial oneand two-sample exact (i.e., valid) tests. When applicable, these priors give posterior belief in the null hypothesis that is a valid p-value, and the null preference prior emphasizes that large p-values may simply represent insufficient data to overturn prior belief. This formulation gives a Bayesian interpretation of some common frequentist tests, as well as more intuitively explaining lesser known and less straightforward confidence intervals for two-sample tests.","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Interpreting p-Values and Confidence Intervals Using Well-Calibrated Null Preference Priors\",\"authors\":\"M. Fay, M. Proschan, E. Brittain, R. Tiwari\",\"doi\":\"10.1214/21-sts833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose well-calibrated null preference priors for use with one-sided hypothesis tests, such that resulting Bayesian and frequentist inferences agree. Null preference priors mean that they have nearly 100% of their prior belief in the null hypothesis, and well-calibrated priors mean that the resulting posterior beliefs in the alternative hypothesis are not overconfident. This formulation expands the class of problems giving Bayes-frequentist agreement to include problems involving discrete distributions such as binomial and negative binomial oneand two-sample exact (i.e., valid) tests. When applicable, these priors give posterior belief in the null hypothesis that is a valid p-value, and the null preference prior emphasizes that large p-values may simply represent insufficient data to overturn prior belief. This formulation gives a Bayesian interpretation of some common frequentist tests, as well as more intuitively explaining lesser known and less straightforward confidence intervals for two-sample tests.\",\"PeriodicalId\":51172,\"journal\":{\"name\":\"Statistical Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/21-sts833\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-sts833","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Interpreting p-Values and Confidence Intervals Using Well-Calibrated Null Preference Priors
We propose well-calibrated null preference priors for use with one-sided hypothesis tests, such that resulting Bayesian and frequentist inferences agree. Null preference priors mean that they have nearly 100% of their prior belief in the null hypothesis, and well-calibrated priors mean that the resulting posterior beliefs in the alternative hypothesis are not overconfident. This formulation expands the class of problems giving Bayes-frequentist agreement to include problems involving discrete distributions such as binomial and negative binomial oneand two-sample exact (i.e., valid) tests. When applicable, these priors give posterior belief in the null hypothesis that is a valid p-value, and the null preference prior emphasizes that large p-values may simply represent insufficient data to overturn prior belief. This formulation gives a Bayesian interpretation of some common frequentist tests, as well as more intuitively explaining lesser known and less straightforward confidence intervals for two-sample tests.
期刊介绍:
The central purpose of Statistical Science is to convey the richness, breadth and unity of the field by presenting the full range of contemporary statistical thought at a moderate technical level, accessible to the wide community of practitioners, researchers and students of statistics and probability.