{"title":"基于生成对抗网络的改进阿拉伯手写字符识别","authors":"Yazan M. Alwaqfi, M. Mohamad, Ahmad T. Al-Taani","doi":"10.15849/ijasca.220328.12","DOIUrl":null,"url":null,"abstract":"Abstract Currently, Arabic character recognition remains one of the most complicated challenges in image processing and character identification. Many algorithms exist in neural networks, and one of the most interesting algorithms is called generative adversarial networks (GANs), where 2 neural networks fight against one another. A generative adversarial network has been successfully implemented in unsupervised learning and it led to outstanding achievements. Furthermore, this discriminator is used as a classifier in most generative adversarial networks by employing the binary sigmoid cross-entropy loss function. This research proposes employing sigmoid cross-entropy to recognize Arabic handwritten characters using multi-class GANs training algorithms. The proposed approach is evaluated on a dataset of 16800 Arabic handwritten characters. When compared to other approaches, the experimental results indicate that the multi-class GANs approach performed well in terms of recognizing Arabic handwritten characters as it is 99.7% accurate. Keywords: Generative Adversarial Networks (GANs), Arabic Characters, Optical Character Recognition, Convolutional Neural Networks (CNNs).","PeriodicalId":38638,"journal":{"name":"International Journal of Advances in Soft Computing and its Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Generative Adversarial Network for an Improved Arabic Handwritten Characters Recognition\",\"authors\":\"Yazan M. Alwaqfi, M. Mohamad, Ahmad T. Al-Taani\",\"doi\":\"10.15849/ijasca.220328.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Currently, Arabic character recognition remains one of the most complicated challenges in image processing and character identification. Many algorithms exist in neural networks, and one of the most interesting algorithms is called generative adversarial networks (GANs), where 2 neural networks fight against one another. A generative adversarial network has been successfully implemented in unsupervised learning and it led to outstanding achievements. Furthermore, this discriminator is used as a classifier in most generative adversarial networks by employing the binary sigmoid cross-entropy loss function. This research proposes employing sigmoid cross-entropy to recognize Arabic handwritten characters using multi-class GANs training algorithms. The proposed approach is evaluated on a dataset of 16800 Arabic handwritten characters. When compared to other approaches, the experimental results indicate that the multi-class GANs approach performed well in terms of recognizing Arabic handwritten characters as it is 99.7% accurate. Keywords: Generative Adversarial Networks (GANs), Arabic Characters, Optical Character Recognition, Convolutional Neural Networks (CNNs).\",\"PeriodicalId\":38638,\"journal\":{\"name\":\"International Journal of Advances in Soft Computing and its Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advances in Soft Computing and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15849/ijasca.220328.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Soft Computing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15849/ijasca.220328.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Generative Adversarial Network for an Improved Arabic Handwritten Characters Recognition
Abstract Currently, Arabic character recognition remains one of the most complicated challenges in image processing and character identification. Many algorithms exist in neural networks, and one of the most interesting algorithms is called generative adversarial networks (GANs), where 2 neural networks fight against one another. A generative adversarial network has been successfully implemented in unsupervised learning and it led to outstanding achievements. Furthermore, this discriminator is used as a classifier in most generative adversarial networks by employing the binary sigmoid cross-entropy loss function. This research proposes employing sigmoid cross-entropy to recognize Arabic handwritten characters using multi-class GANs training algorithms. The proposed approach is evaluated on a dataset of 16800 Arabic handwritten characters. When compared to other approaches, the experimental results indicate that the multi-class GANs approach performed well in terms of recognizing Arabic handwritten characters as it is 99.7% accurate. Keywords: Generative Adversarial Networks (GANs), Arabic Characters, Optical Character Recognition, Convolutional Neural Networks (CNNs).
期刊介绍:
The aim of this journal is to provide a lively forum for the communication of original research papers and timely review articles on Advances in Soft Computing and Its Applications. IJASCA will publish only articles of the highest quality. Submissions will be evaluated on their originality and significance. IJASCA invites submissions in all areas of Soft Computing and Its Applications. The scope of the journal includes, but is not limited to: √ Soft Computing Fundamental and Optimization √ Soft Computing for Big Data Era √ GPU Computing for Machine Learning √ Soft Computing Modeling for Perception and Spiritual Intelligence √ Soft Computing and Agents Technology √ Soft Computing in Computer Graphics √ Soft Computing and Pattern Recognition √ Soft Computing in Biomimetic Pattern Recognition √ Data mining for Social Network Data √ Spatial Data Mining & Information Retrieval √ Intelligent Software Agent Systems and Architectures √ Advanced Soft Computing and Multi-Objective Evolutionary Computation √ Perception-Based Intelligent Decision Systems √ Spiritual-Based Intelligent Systems √ Soft Computing in Industry ApplicationsOther issues related to the Advances of Soft Computing in various applications.