考虑力学各向异性的天然冲积层渗流随机分析

IF 1 Q4 ENGINEERING, CIVIL
R. Chenari, Behroo Behfar
{"title":"考虑力学各向异性的天然冲积层渗流随机分析","authors":"R. Chenari, Behroo Behfar","doi":"10.7508/CEIJ.2017.02.003","DOIUrl":null,"url":null,"abstract":"The soil is a heterogeneous and anisotropic medium. Hydraulic conductivity, an intrinsic property of natural alluvial deposits varies both deterministically and randomly in space and has different values in various directions. In the present study, the permeability of natural deposits and its influence on the seepage flow through a natural alluvial deposit is studied. The 2D Finite Difference code, FLAC 5.0, is used for modeling permeability as a random variable with lognormal distribution and correlated structure. Effect of spatially varying permeability on the seepage flow through deposit is investigated for both isotropic and anisotropic conditions. Results show that in isotropic condition, the mean discharge flow rate calculated from stochastic analyses is less than the equivalent deterministic value and this reduction depends on the coefficient of variation, COV of permeability and the correlation length. The directionality of permeability introduced as mechanical anisotropy was also studied along with the heterogeneity. It was found that increasing the anisotropy ratio of permeability leads to the formation of horizontal flow canals and increasing the seepage flow consequently at a constant vertical permeability. Variation of permeability coefficient was found to have almost no impact on mean discharge flow rate for anisotropic fields in comparison to the isotropic condition.","PeriodicalId":43959,"journal":{"name":"Civil Engineering Infrastructures Journal-CEIJ","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Stochastic Analysis of Seepage through Natural Alluvial Deposits Considering Mechanical Anisotropy\",\"authors\":\"R. Chenari, Behroo Behfar\",\"doi\":\"10.7508/CEIJ.2017.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The soil is a heterogeneous and anisotropic medium. Hydraulic conductivity, an intrinsic property of natural alluvial deposits varies both deterministically and randomly in space and has different values in various directions. In the present study, the permeability of natural deposits and its influence on the seepage flow through a natural alluvial deposit is studied. The 2D Finite Difference code, FLAC 5.0, is used for modeling permeability as a random variable with lognormal distribution and correlated structure. Effect of spatially varying permeability on the seepage flow through deposit is investigated for both isotropic and anisotropic conditions. Results show that in isotropic condition, the mean discharge flow rate calculated from stochastic analyses is less than the equivalent deterministic value and this reduction depends on the coefficient of variation, COV of permeability and the correlation length. The directionality of permeability introduced as mechanical anisotropy was also studied along with the heterogeneity. It was found that increasing the anisotropy ratio of permeability leads to the formation of horizontal flow canals and increasing the seepage flow consequently at a constant vertical permeability. Variation of permeability coefficient was found to have almost no impact on mean discharge flow rate for anisotropic fields in comparison to the isotropic condition.\",\"PeriodicalId\":43959,\"journal\":{\"name\":\"Civil Engineering Infrastructures Journal-CEIJ\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil Engineering Infrastructures Journal-CEIJ\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7508/CEIJ.2017.02.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Infrastructures Journal-CEIJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7508/CEIJ.2017.02.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 14

摘要

土壤是一种非均质、各向异性介质。水力导电性是天然冲积层的固有属性,在空间上既有确定性又有随机性,在不同方向上具有不同的数值。本文研究了天然冲积层的渗透性及其对天然冲积层渗流的影响。采用二维有限差分代码FLAC 5.0将渗透率建模为对数正态分布和相关结构的随机变量。在各向同性和各向异性条件下,研究了渗透率空间变化对沉积物渗流的影响。结果表明,在各向同性条件下,随机分析计算的平均流量小于等效确定性值,其减小量取决于变异系数、渗透率COV和相关长度。引入力学各向异性的渗透率的方向性也与非均质性一起进行了研究。研究发现,在垂向渗透率一定的情况下,增加渗透率各向异性比会导致水平流道的形成,从而增加了渗流量。与各向同性条件相比,各向异性条件下渗透系数的变化对平均流量几乎没有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Analysis of Seepage through Natural Alluvial Deposits Considering Mechanical Anisotropy
The soil is a heterogeneous and anisotropic medium. Hydraulic conductivity, an intrinsic property of natural alluvial deposits varies both deterministically and randomly in space and has different values in various directions. In the present study, the permeability of natural deposits and its influence on the seepage flow through a natural alluvial deposit is studied. The 2D Finite Difference code, FLAC 5.0, is used for modeling permeability as a random variable with lognormal distribution and correlated structure. Effect of spatially varying permeability on the seepage flow through deposit is investigated for both isotropic and anisotropic conditions. Results show that in isotropic condition, the mean discharge flow rate calculated from stochastic analyses is less than the equivalent deterministic value and this reduction depends on the coefficient of variation, COV of permeability and the correlation length. The directionality of permeability introduced as mechanical anisotropy was also studied along with the heterogeneity. It was found that increasing the anisotropy ratio of permeability leads to the formation of horizontal flow canals and increasing the seepage flow consequently at a constant vertical permeability. Variation of permeability coefficient was found to have almost no impact on mean discharge flow rate for anisotropic fields in comparison to the isotropic condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
60.00%
发文量
0
审稿时长
47 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信