{"title":"多变量Legendre poly-Genocchi多项式的统一族","authors":"T. Usman, R. Khan, M. Aman, Y. Gasimov","doi":"10.32513/tmj/19322008130","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new class of Legendre poly-Genocchi polynomials and give some identities of these polynomials related to the Stirling numbers of the second kind. The concept of poly-Bernoulli numbers $B_{n}^{(k)}(a,b)$, poly-Bernoulli polynomials $B_{n}^{(k)}(x,a,b)$ of Jolany et al., Hermite-Bernoulli polynomials ${}_{H}B_{n}(x,y)$ of Dattoli et al., ${}_{H}B_{n}^{(\\alpha)}(x,y)$ of Pathan et al. and ${}_{H}G_{n}^{(k)}(x,y)$ of Khan are generalized to the one $_{S}G_{n}^{(k)}(x,y,z)$. Some implicit summation formulae and general symmetry identities are derived by using different analytical means and applying generating function. These results extended some known summation and identities of Hermite poly-Genocchi numbers and polynomials.","PeriodicalId":43977,"journal":{"name":"Tbilisi Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A unified family of multivariable Legendre poly-Genocchi polynomials\",\"authors\":\"T. Usman, R. Khan, M. Aman, Y. Gasimov\",\"doi\":\"10.32513/tmj/19322008130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a new class of Legendre poly-Genocchi polynomials and give some identities of these polynomials related to the Stirling numbers of the second kind. The concept of poly-Bernoulli numbers $B_{n}^{(k)}(a,b)$, poly-Bernoulli polynomials $B_{n}^{(k)}(x,a,b)$ of Jolany et al., Hermite-Bernoulli polynomials ${}_{H}B_{n}(x,y)$ of Dattoli et al., ${}_{H}B_{n}^{(\\\\alpha)}(x,y)$ of Pathan et al. and ${}_{H}G_{n}^{(k)}(x,y)$ of Khan are generalized to the one $_{S}G_{n}^{(k)}(x,y,z)$. Some implicit summation formulae and general symmetry identities are derived by using different analytical means and applying generating function. These results extended some known summation and identities of Hermite poly-Genocchi numbers and polynomials.\",\"PeriodicalId\":43977,\"journal\":{\"name\":\"Tbilisi Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tbilisi Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32513/tmj/19322008130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tbilisi Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32513/tmj/19322008130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A unified family of multivariable Legendre poly-Genocchi polynomials
In this paper, we introduce a new class of Legendre poly-Genocchi polynomials and give some identities of these polynomials related to the Stirling numbers of the second kind. The concept of poly-Bernoulli numbers $B_{n}^{(k)}(a,b)$, poly-Bernoulli polynomials $B_{n}^{(k)}(x,a,b)$ of Jolany et al., Hermite-Bernoulli polynomials ${}_{H}B_{n}(x,y)$ of Dattoli et al., ${}_{H}B_{n}^{(\alpha)}(x,y)$ of Pathan et al. and ${}_{H}G_{n}^{(k)}(x,y)$ of Khan are generalized to the one $_{S}G_{n}^{(k)}(x,y,z)$. Some implicit summation formulae and general symmetry identities are derived by using different analytical means and applying generating function. These results extended some known summation and identities of Hermite poly-Genocchi numbers and polynomials.