{"title":"免疫逻辑没有那么免疫","authors":"J. J. Joaquin","doi":"10.12775/llp.2022.029","DOIUrl":null,"url":null,"abstract":"Da Ré and Szmuc argue that while there is a symmetry between ‘infectious’ and ‘immune’ logics, this symmetry fails w.r.t. extending an algebra with an immune or an infectious element. In this paper, I show that the symmetry also fails w.r.t. defining a new logical operation from a given set of primitive (Boolean) operations. I use the case of the material conditional to illustrate this point.","PeriodicalId":43501,"journal":{"name":"Logic and Logical Philosophy","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immune Logics ain't that Immune\",\"authors\":\"J. J. Joaquin\",\"doi\":\"10.12775/llp.2022.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Da Ré and Szmuc argue that while there is a symmetry between ‘infectious’ and ‘immune’ logics, this symmetry fails w.r.t. extending an algebra with an immune or an infectious element. In this paper, I show that the symmetry also fails w.r.t. defining a new logical operation from a given set of primitive (Boolean) operations. I use the case of the material conditional to illustrate this point.\",\"PeriodicalId\":43501,\"journal\":{\"name\":\"Logic and Logical Philosophy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logic and Logical Philosophy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12775/llp.2022.029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic and Logical Philosophy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/llp.2022.029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
摘要
Da r和Szmuc认为,虽然“感染”和“免疫”逻辑之间存在对称性,但这种对称性并不适用于用免疫或感染元素扩展代数。在本文中,我证明了对称也不能从给定的一组基本(布尔)操作中定义一个新的逻辑操作。我用材料条件句来说明这一点。
Da Ré and Szmuc argue that while there is a symmetry between ‘infectious’ and ‘immune’ logics, this symmetry fails w.r.t. extending an algebra with an immune or an infectious element. In this paper, I show that the symmetry also fails w.r.t. defining a new logical operation from a given set of primitive (Boolean) operations. I use the case of the material conditional to illustrate this point.