{"title":"对称极小曲面方程","authors":"K. Fouladgar, L. Simon","doi":"10.1512/iumj.2020.69.8412","DOIUrl":null,"url":null,"abstract":"and, geometrically, A (u) represents the area functional for S(u); that is, A (u) is the (n+m−1)-dimensional Hausdorff measure H n+m−1(S(u)). This is clear because the integrand √ 1+|Du|2 um−1 for A (u) is the Jacobian of the map (x,ω) ∈Ω×Sm−1 7→ (x, u(x)ω)∈Ω×R, and this map is a local coordinate representation for the symmetric graph S(u). Since 1.1 1.1 expresses the fact that u is stationary with respect to A , we see that S(u) is stationary with respect to smooth symmetric deformations, and hence stationary with respect to all deformations by a well-known principle (see e.g. [Law72]). (The latter principle here is just the natural generalization of the fact that if a smooth hypersurface Σ is rotationally symmetric about an axis and if Σ is stationary with respect to smooth rotationally symmetric compactly supported perturbations, then Σ is minimal—i.e. stationary with respect to all smooth compactly supported perturbations whether symmetric or not.) Thus the smooth submanifold S(u) is stationary as a multiplicity 1 varifold in Ω× (R \\ {0}) and hence is a smooth minimal submanifold of Ω× (R \\{0}) as claimed.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1512/iumj.2020.69.8412","citationCount":"3","resultStr":"{\"title\":\"The symmetric minimal surface equation\",\"authors\":\"K. Fouladgar, L. Simon\",\"doi\":\"10.1512/iumj.2020.69.8412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"and, geometrically, A (u) represents the area functional for S(u); that is, A (u) is the (n+m−1)-dimensional Hausdorff measure H n+m−1(S(u)). This is clear because the integrand √ 1+|Du|2 um−1 for A (u) is the Jacobian of the map (x,ω) ∈Ω×Sm−1 7→ (x, u(x)ω)∈Ω×R, and this map is a local coordinate representation for the symmetric graph S(u). Since 1.1 1.1 expresses the fact that u is stationary with respect to A , we see that S(u) is stationary with respect to smooth symmetric deformations, and hence stationary with respect to all deformations by a well-known principle (see e.g. [Law72]). (The latter principle here is just the natural generalization of the fact that if a smooth hypersurface Σ is rotationally symmetric about an axis and if Σ is stationary with respect to smooth rotationally symmetric compactly supported perturbations, then Σ is minimal—i.e. stationary with respect to all smooth compactly supported perturbations whether symmetric or not.) Thus the smooth submanifold S(u) is stationary as a multiplicity 1 varifold in Ω× (R \\\\ {0}) and hence is a smooth minimal submanifold of Ω× (R \\\\{0}) as claimed.\",\"PeriodicalId\":50369,\"journal\":{\"name\":\"Indiana University Mathematics Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1512/iumj.2020.69.8412\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indiana University Mathematics Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2020.69.8412\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2020.69.8412","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
and, geometrically, A (u) represents the area functional for S(u); that is, A (u) is the (n+m−1)-dimensional Hausdorff measure H n+m−1(S(u)). This is clear because the integrand √ 1+|Du|2 um−1 for A (u) is the Jacobian of the map (x,ω) ∈Ω×Sm−1 7→ (x, u(x)ω)∈Ω×R, and this map is a local coordinate representation for the symmetric graph S(u). Since 1.1 1.1 expresses the fact that u is stationary with respect to A , we see that S(u) is stationary with respect to smooth symmetric deformations, and hence stationary with respect to all deformations by a well-known principle (see e.g. [Law72]). (The latter principle here is just the natural generalization of the fact that if a smooth hypersurface Σ is rotationally symmetric about an axis and if Σ is stationary with respect to smooth rotationally symmetric compactly supported perturbations, then Σ is minimal—i.e. stationary with respect to all smooth compactly supported perturbations whether symmetric or not.) Thus the smooth submanifold S(u) is stationary as a multiplicity 1 varifold in Ω× (R \ {0}) and hence is a smooth minimal submanifold of Ω× (R \{0}) as claimed.