多项式有限自由乘法卷积根的大数定律

IF 0.9 3区 物理与天体物理 Q2 MATHEMATICS
Katsunori Fujie, Yuki Ueda
{"title":"多项式有限自由乘法卷积根的大数定律","authors":"Katsunori Fujie, Yuki Ueda","doi":"10.3842/SIGMA.2023.004","DOIUrl":null,"url":null,"abstract":"We provide the law of large numbers for roots of finite free multiplicative convolution of polynomials which have only non-negative real roots. Moreover, we study the empirical root distributions of limit polynomials obtained through the law of large numbers of finite free multiplicative convolution when their degree tends to infinity.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Law of Large Numbers for Roots of Finite Free Multiplicative Convolution of Polynomials\",\"authors\":\"Katsunori Fujie, Yuki Ueda\",\"doi\":\"10.3842/SIGMA.2023.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide the law of large numbers for roots of finite free multiplicative convolution of polynomials which have only non-negative real roots. Moreover, we study the empirical root distributions of limit polynomials obtained through the law of large numbers of finite free multiplicative convolution when their degree tends to infinity.\",\"PeriodicalId\":49453,\"journal\":{\"name\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3842/SIGMA.2023.004\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3842/SIGMA.2023.004","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了多项式的有限自由乘法卷积的根的大数定律,这些根只有非负实根。此外,我们还研究了通过有限自由乘法卷积的大数定律获得的极限多项式在其阶趋于无穷大时的经验根分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Law of Large Numbers for Roots of Finite Free Multiplicative Convolution of Polynomials
We provide the law of large numbers for roots of finite free multiplicative convolution of polynomials which have only non-negative real roots. Moreover, we study the empirical root distributions of limit polynomials obtained through the law of large numbers of finite free multiplicative convolution when their degree tends to infinity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
87
审稿时长
4-8 weeks
期刊介绍: Scope Geometrical methods in mathematical physics Lie theory and differential equations Classical and quantum integrable systems Algebraic methods in dynamical systems and chaos Exactly and quasi-exactly solvable models Lie groups and algebras, representation theory Orthogonal polynomials and special functions Integrable probability and stochastic processes Quantum algebras, quantum groups and their representations Symplectic, Poisson and noncommutative geometry Algebraic geometry and its applications Quantum field theories and string/gauge theories Statistical physics and condensed matter physics Quantum gravity and cosmology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信