k维球面积分的渐近性及其应用

Pub Date : 2021-01-06 DOI:10.30757/alea.v19-30
A. Guionnet, Jonathan Husson
{"title":"k维球面积分的渐近性及其应用","authors":"A. Guionnet, Jonathan Husson","doi":"10.30757/alea.v19-30","DOIUrl":null,"url":null,"abstract":"In this article, we prove that k-dimensional spherical integrals are asymptotically equivalent to the product of 1-dimensional spherical integrals. This allows us to generalize several large deviations principles in random matrix theory known before only in a one-dimensional case. As examples, we study the universality of the large deviations for k extreme eigenvalues of Wigner matrices (resp. Wishart matrices, resp. matrices with general variance profiles) with sharp sub-Gaussian entries, as well as large deviations principles for extreme eigenvalues of Gaussian Wigner and Wishart matrices with a finite dimensional perturbation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Asymptotics of k dimensional spherical integrals and applications\",\"authors\":\"A. Guionnet, Jonathan Husson\",\"doi\":\"10.30757/alea.v19-30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we prove that k-dimensional spherical integrals are asymptotically equivalent to the product of 1-dimensional spherical integrals. This allows us to generalize several large deviations principles in random matrix theory known before only in a one-dimensional case. As examples, we study the universality of the large deviations for k extreme eigenvalues of Wigner matrices (resp. Wishart matrices, resp. matrices with general variance profiles) with sharp sub-Gaussian entries, as well as large deviations principles for extreme eigenvalues of Gaussian Wigner and Wishart matrices with a finite dimensional perturbation.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/alea.v19-30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v19-30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文证明了k维球面积分与一维球面积分之积渐近等价。这使我们能够推广以前只在一维情况下已知的随机矩阵理论中的几个大偏差原理。作为例子,我们研究了Wigner矩阵k个极值特征值的大偏差的普适性。Wishart矩阵,如。具有一般方差轮廓的矩阵)具有尖锐的亚高斯条目,以及具有有限维摄动的高斯Wigner和Wishart矩阵的极端特征值的大偏差原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Asymptotics of k dimensional spherical integrals and applications
In this article, we prove that k-dimensional spherical integrals are asymptotically equivalent to the product of 1-dimensional spherical integrals. This allows us to generalize several large deviations principles in random matrix theory known before only in a one-dimensional case. As examples, we study the universality of the large deviations for k extreme eigenvalues of Wigner matrices (resp. Wishart matrices, resp. matrices with general variance profiles) with sharp sub-Gaussian entries, as well as large deviations principles for extreme eigenvalues of Gaussian Wigner and Wishart matrices with a finite dimensional perturbation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信