随机约束下一般pareto分布参数的自适应估计及其应用

IF 0.3 Q4 MULTIDISCIPLINARY SCIENCES
Kouider Mohammed Ridha, Idiou Nesrine, Benatia Fatah
{"title":"随机约束下一般pareto分布参数的自适应估计及其应用","authors":"Kouider Mohammed Ridha, Idiou Nesrine, Benatia Fatah","doi":"10.46939/j.sci.arts-23.2-a07","DOIUrl":null,"url":null,"abstract":"In this article, we introduce adaptive estimators for parameters of the (GPD) Generalized Pareto Distribution under censored data via the KIB-estimator. The KIB-estimator is based on the Maximum Likelihood Estimates (MLE) by the exceedances over the threshold t under random censoring which was developed by [1]. Hence, it was proved that the KIB-estimator is Maximum Likelihood (ML) estimator with the uncensored case. We use the standardized MLE based on the exceedances on the uncensored situation which converge to a centered bivariate normal distribution. Whose found by [2] to standardized our adaptive KIB estimator of the GPD parameters under random censorship. As an application, we establish the asymptotic normality of an estimator of the excess-of- loss reinsurance premium for heavy-tailed distribution, through the adapted KIB estimator of GPD under censored data.","PeriodicalId":54169,"journal":{"name":"Journal of Science and Arts","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ADAPTIVE ESTIMATORS OF THE GENERAL PARETO DISTRIBUTION PARAMETERS UNDER RANDOM CENSORSHIP AND APPLICATION\",\"authors\":\"Kouider Mohammed Ridha, Idiou Nesrine, Benatia Fatah\",\"doi\":\"10.46939/j.sci.arts-23.2-a07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we introduce adaptive estimators for parameters of the (GPD) Generalized Pareto Distribution under censored data via the KIB-estimator. The KIB-estimator is based on the Maximum Likelihood Estimates (MLE) by the exceedances over the threshold t under random censoring which was developed by [1]. Hence, it was proved that the KIB-estimator is Maximum Likelihood (ML) estimator with the uncensored case. We use the standardized MLE based on the exceedances on the uncensored situation which converge to a centered bivariate normal distribution. Whose found by [2] to standardized our adaptive KIB estimator of the GPD parameters under random censorship. As an application, we establish the asymptotic normality of an estimator of the excess-of- loss reinsurance premium for heavy-tailed distribution, through the adapted KIB estimator of GPD under censored data.\",\"PeriodicalId\":54169,\"journal\":{\"name\":\"Journal of Science and Arts\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science and Arts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46939/j.sci.arts-23.2-a07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Arts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46939/j.sci.arts-23.2-a07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们通过KIB估计器介绍了截尾数据下(GPD)广义Pareto分布参数的自适应估计。KIB估计器是基于[1]提出的在随机截尾条件下超过阈值t的最大似然估计(MLE)。因此,证明了KIB估计量是非审查情况下的最大似然估计量。我们使用标准化MLE,该MLE基于在未经审查的情况下的超越,其收敛到中心二变量正态分布。[2]的发现标准化了我们在随机审查下的GPD参数的自适应KIB估计器。作为一个应用,我们通过截尾数据下GPD的自适应KIB估计,建立了重尾分布超额损失再保险保费估计量的渐近正态性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ADAPTIVE ESTIMATORS OF THE GENERAL PARETO DISTRIBUTION PARAMETERS UNDER RANDOM CENSORSHIP AND APPLICATION
In this article, we introduce adaptive estimators for parameters of the (GPD) Generalized Pareto Distribution under censored data via the KIB-estimator. The KIB-estimator is based on the Maximum Likelihood Estimates (MLE) by the exceedances over the threshold t under random censoring which was developed by [1]. Hence, it was proved that the KIB-estimator is Maximum Likelihood (ML) estimator with the uncensored case. We use the standardized MLE based on the exceedances on the uncensored situation which converge to a centered bivariate normal distribution. Whose found by [2] to standardized our adaptive KIB estimator of the GPD parameters under random censorship. As an application, we establish the asymptotic normality of an estimator of the excess-of- loss reinsurance premium for heavy-tailed distribution, through the adapted KIB estimator of GPD under censored data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Science and Arts
Journal of Science and Arts MULTIDISCIPLINARY SCIENCES-
自引率
25.00%
发文量
57
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信