阿尔卑斯地区未来对能源储存的需求

Q3 Earth and Planetary Sciences
M. Hočevar, L. Novak, Gašper Rak
{"title":"阿尔卑斯地区未来对能源储存的需求","authors":"M. Hočevar, L. Novak, Gašper Rak","doi":"10.15292/acta.hydro.2019.03","DOIUrl":null,"url":null,"abstract":"In this paper we discuss energy storage requirements for EUSALP region in Europe. EUSALP is an Alpine region that includes the entirety Switzerland, Austria, Slovenia, and Lichtenstein, as well as parts of France, Germany, and Italy. A model is presented that facilitates the estimation of the required technical amounts of energy storage and installed power of pumped storage hydropower plants. The aim of the model is to estimate the requirements of energy storage to assist in setting guidelines for stable and reliable future electric energy supply in the EUSALP region. The model is based on currently known patterns of energy consumption and generation and available information on the future increase of renewable electric generation capacity, energy consumption, and the introduction of electromobility within all EUSALP regions. The hourly balance of generation, demand, and storage within a selected future year is assumed. The results are presented such that a mix of scenarios is addressed. Among them are installed generation capacity, installed pumped hydro storage power, selection of photovoltaic and wind electric energy generation ratio, the charging of a selected percentage of electric cars, flexible run-of-river hydro electric energy generation, import/export, generation by nuclear and backup fossil fuel sources, and a selection of disturbances. Results show that energy storage capacities must be increased by a large margin regardless of the choice of demand site management strategies or flexible electric car charging. Around a requisite 10-fold increase in pumped storage hydropower capacity is estimated, while the estimated increase in required energy storage is even higher. Daily and seasonal variations are also discussed. Further, the amount of surplus electric energy generation is presented and discussed.","PeriodicalId":36671,"journal":{"name":"Acta Hydrotechnica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Future needs for energy storage in the Alpine region\",\"authors\":\"M. Hočevar, L. Novak, Gašper Rak\",\"doi\":\"10.15292/acta.hydro.2019.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we discuss energy storage requirements for EUSALP region in Europe. EUSALP is an Alpine region that includes the entirety Switzerland, Austria, Slovenia, and Lichtenstein, as well as parts of France, Germany, and Italy. A model is presented that facilitates the estimation of the required technical amounts of energy storage and installed power of pumped storage hydropower plants. The aim of the model is to estimate the requirements of energy storage to assist in setting guidelines for stable and reliable future electric energy supply in the EUSALP region. The model is based on currently known patterns of energy consumption and generation and available information on the future increase of renewable electric generation capacity, energy consumption, and the introduction of electromobility within all EUSALP regions. The hourly balance of generation, demand, and storage within a selected future year is assumed. The results are presented such that a mix of scenarios is addressed. Among them are installed generation capacity, installed pumped hydro storage power, selection of photovoltaic and wind electric energy generation ratio, the charging of a selected percentage of electric cars, flexible run-of-river hydro electric energy generation, import/export, generation by nuclear and backup fossil fuel sources, and a selection of disturbances. Results show that energy storage capacities must be increased by a large margin regardless of the choice of demand site management strategies or flexible electric car charging. Around a requisite 10-fold increase in pumped storage hydropower capacity is estimated, while the estimated increase in required energy storage is even higher. Daily and seasonal variations are also discussed. Further, the amount of surplus electric energy generation is presented and discussed.\",\"PeriodicalId\":36671,\"journal\":{\"name\":\"Acta Hydrotechnica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Hydrotechnica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15292/acta.hydro.2019.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Hydrotechnica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15292/acta.hydro.2019.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们讨论了欧洲EUSALP地区的储能要求。EUSALP是一个阿尔卑斯地区,包括整个瑞士、奥地利、斯洛文尼亚和利希滕斯坦,以及法国、德国和意大利的部分地区。提出了一个模型,该模型有助于估算抽水蓄能水电站所需的储能技术量和装机功率。该模型的目的是估计储能需求,以帮助制定欧盟小武器和轻武器区未来稳定可靠的电力供应指南。该模型基于目前已知的能源消耗和发电模式,以及关于未来可再生能源发电能力增加、能源消耗和在所有欧盟小武器和轻武器区引入电动汽车的可用信息。假设在选定的未来年份内发电、需求和储存的小时平衡。给出的结果是为了解决各种情况。其中包括发电装机容量、抽水蓄能装机、光伏和风能发电比例的选择、选定比例的电动汽车充电、灵活运行的河流水力发电、进口/出口、核能和备用化石燃料发电以及一系列干扰。结果表明,无论选择需求现场管理策略还是灵活的电动汽车充电,储能能力都必须大幅度提高。据估计,抽水蓄能水电容量将增加约10倍,而所需储能的估计增幅甚至更高。还讨论了日变化和季节变化。此外,还提出并讨论了剩余电能发电量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Future needs for energy storage in the Alpine region
In this paper we discuss energy storage requirements for EUSALP region in Europe. EUSALP is an Alpine region that includes the entirety Switzerland, Austria, Slovenia, and Lichtenstein, as well as parts of France, Germany, and Italy. A model is presented that facilitates the estimation of the required technical amounts of energy storage and installed power of pumped storage hydropower plants. The aim of the model is to estimate the requirements of energy storage to assist in setting guidelines for stable and reliable future electric energy supply in the EUSALP region. The model is based on currently known patterns of energy consumption and generation and available information on the future increase of renewable electric generation capacity, energy consumption, and the introduction of electromobility within all EUSALP regions. The hourly balance of generation, demand, and storage within a selected future year is assumed. The results are presented such that a mix of scenarios is addressed. Among them are installed generation capacity, installed pumped hydro storage power, selection of photovoltaic and wind electric energy generation ratio, the charging of a selected percentage of electric cars, flexible run-of-river hydro electric energy generation, import/export, generation by nuclear and backup fossil fuel sources, and a selection of disturbances. Results show that energy storage capacities must be increased by a large margin regardless of the choice of demand site management strategies or flexible electric car charging. Around a requisite 10-fold increase in pumped storage hydropower capacity is estimated, while the estimated increase in required energy storage is even higher. Daily and seasonal variations are also discussed. Further, the amount of surplus electric energy generation is presented and discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Hydrotechnica
Acta Hydrotechnica Environmental Science-Environmental Engineering
CiteScore
1.30
自引率
0.00%
发文量
1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信