{"title":"纳米科学和纳米技术的最新成就和未来挑战","authors":"Z. Mansurov","doi":"10.18321/ectj994","DOIUrl":null,"url":null,"abstract":"The article presents the investigation results of the formation and synthesis of nanosized materials which were obtained at the Institute of Combustion Problems, many works have been brought to practical use. Investigations of low-temperature soot formation become the basis of nanomaterial synthesis methods, developed at the Institute for Combustion Problems since 1985. Flame can be considered as a chemical reactor to produce target products. The main feature of the processes based on technological combustion is that the target product is formed as a result of the combustion reaction, occurring spontaneously at high temperatures with a high speed without consuming external energy, i.e. due to its own heat. With the development of nanotechnology, new challenges have emerged in the synthesis of nanomaterials under combustion synthesis conditions. Below is a list of works on nanomaterials synthesis carried out at the Institute: complete scheme of soot formation; energy intensive nanocarbon materials; development and study of perovskite photocatalysts for hydrogen evolution; obtaining carbon fibers by the method of electrospinning; obtaining of biologically soluble membranes based on polymeric nanofibres and hydroxyapatite of calcium; synthesis of nanocarbon sorbents for purification of water from heavy metal ions.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Recent Achievements and Future Challenges in Nanoscience and Nanotechnology\",\"authors\":\"Z. Mansurov\",\"doi\":\"10.18321/ectj994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article presents the investigation results of the formation and synthesis of nanosized materials which were obtained at the Institute of Combustion Problems, many works have been brought to practical use. Investigations of low-temperature soot formation become the basis of nanomaterial synthesis methods, developed at the Institute for Combustion Problems since 1985. Flame can be considered as a chemical reactor to produce target products. The main feature of the processes based on technological combustion is that the target product is formed as a result of the combustion reaction, occurring spontaneously at high temperatures with a high speed without consuming external energy, i.e. due to its own heat. With the development of nanotechnology, new challenges have emerged in the synthesis of nanomaterials under combustion synthesis conditions. Below is a list of works on nanomaterials synthesis carried out at the Institute: complete scheme of soot formation; energy intensive nanocarbon materials; development and study of perovskite photocatalysts for hydrogen evolution; obtaining carbon fibers by the method of electrospinning; obtaining of biologically soluble membranes based on polymeric nanofibres and hydroxyapatite of calcium; synthesis of nanocarbon sorbents for purification of water from heavy metal ions.\",\"PeriodicalId\":11795,\"journal\":{\"name\":\"Eurasian Chemico-Technological Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasian Chemico-Technological Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18321/ectj994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Chemico-Technological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18321/ectj994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Recent Achievements and Future Challenges in Nanoscience and Nanotechnology
The article presents the investigation results of the formation and synthesis of nanosized materials which were obtained at the Institute of Combustion Problems, many works have been brought to practical use. Investigations of low-temperature soot formation become the basis of nanomaterial synthesis methods, developed at the Institute for Combustion Problems since 1985. Flame can be considered as a chemical reactor to produce target products. The main feature of the processes based on technological combustion is that the target product is formed as a result of the combustion reaction, occurring spontaneously at high temperatures with a high speed without consuming external energy, i.e. due to its own heat. With the development of nanotechnology, new challenges have emerged in the synthesis of nanomaterials under combustion synthesis conditions. Below is a list of works on nanomaterials synthesis carried out at the Institute: complete scheme of soot formation; energy intensive nanocarbon materials; development and study of perovskite photocatalysts for hydrogen evolution; obtaining carbon fibers by the method of electrospinning; obtaining of biologically soluble membranes based on polymeric nanofibres and hydroxyapatite of calcium; synthesis of nanocarbon sorbents for purification of water from heavy metal ions.
期刊介绍:
The journal is designed for publication of experimental and theoretical investigation results in the field of chemistry and chemical technology. Among priority fields that emphasized by chemical science are as follows: advanced materials and chemical technologies, current issues of organic synthesis and chemistry of natural compounds, physical chemistry, chemical physics, electro-photo-radiative-plasma chemistry, colloids, nanotechnologies, catalysis and surface-active materials, polymers, biochemistry.