Azrul Nurfaiz Mohd Faizal, M. A. Che Yunus, Asmadi Ali, M. Zaini
{"title":"亚甲基蓝在β-环糊精聚合物上吸附的动力学和平衡研究","authors":"Azrul Nurfaiz Mohd Faizal, M. A. Che Yunus, Asmadi Ali, M. Zaini","doi":"10.1515/ijcre-2022-0118","DOIUrl":null,"url":null,"abstract":"Abstract The exclusive properties of β-cyclodextrin (β-CD) combined with its harmless characters making it as an interesting and potential carbon adsorbent for water pollutants removal via adsorption. This work was aimed at evaluating the kinetics and isotherm parameters of methylene blue dye adsorption onto β-CD polymers. The carbon polymers were prepared by citric acid cross-linking, followed by post-treatment with sodium p-toluenesulfinate. The adsorbents were characterized using TGA, BET and FTIR. The adsorption of methylene blue was studied at varying concentrations (5–300 mg/L) and contact times (10–2880 min), and the kinetics and isotherm models were employed to describe the adsorption data. The post-treated carbon polymer exhibits a greater specific surface of 16.6 m2/g. The maximum adsorption of methylene blue by cross-linked and post-treated β-CD adsorbents are 263 and 227 mg/g, respectively. The kinetics data fitted well into pseudo-first order model, indicating physical adsorption. The Boyd’s model showed that film diffusion may be the controlling mechanism. The equilibrium data of methylene blue adsorption for the two β-CD polymers obeyed Langmuir model. To conclude, β-CD is a promising adsorbent candidate for the treatment of dye wastewater.","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":"21 1","pages":"815 - 821"},"PeriodicalIF":1.6000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Insights into kinetics and equilibrium of methylene blue adsorption onto β-cyclodextrin polymers\",\"authors\":\"Azrul Nurfaiz Mohd Faizal, M. A. Che Yunus, Asmadi Ali, M. Zaini\",\"doi\":\"10.1515/ijcre-2022-0118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The exclusive properties of β-cyclodextrin (β-CD) combined with its harmless characters making it as an interesting and potential carbon adsorbent for water pollutants removal via adsorption. This work was aimed at evaluating the kinetics and isotherm parameters of methylene blue dye adsorption onto β-CD polymers. The carbon polymers were prepared by citric acid cross-linking, followed by post-treatment with sodium p-toluenesulfinate. The adsorbents were characterized using TGA, BET and FTIR. The adsorption of methylene blue was studied at varying concentrations (5–300 mg/L) and contact times (10–2880 min), and the kinetics and isotherm models were employed to describe the adsorption data. The post-treated carbon polymer exhibits a greater specific surface of 16.6 m2/g. The maximum adsorption of methylene blue by cross-linked and post-treated β-CD adsorbents are 263 and 227 mg/g, respectively. The kinetics data fitted well into pseudo-first order model, indicating physical adsorption. The Boyd’s model showed that film diffusion may be the controlling mechanism. The equilibrium data of methylene blue adsorption for the two β-CD polymers obeyed Langmuir model. To conclude, β-CD is a promising adsorbent candidate for the treatment of dye wastewater.\",\"PeriodicalId\":51069,\"journal\":{\"name\":\"International Journal of Chemical Reactor Engineering\",\"volume\":\"21 1\",\"pages\":\"815 - 821\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Reactor Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijcre-2022-0118\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2022-0118","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
Insights into kinetics and equilibrium of methylene blue adsorption onto β-cyclodextrin polymers
Abstract The exclusive properties of β-cyclodextrin (β-CD) combined with its harmless characters making it as an interesting and potential carbon adsorbent for water pollutants removal via adsorption. This work was aimed at evaluating the kinetics and isotherm parameters of methylene blue dye adsorption onto β-CD polymers. The carbon polymers were prepared by citric acid cross-linking, followed by post-treatment with sodium p-toluenesulfinate. The adsorbents were characterized using TGA, BET and FTIR. The adsorption of methylene blue was studied at varying concentrations (5–300 mg/L) and contact times (10–2880 min), and the kinetics and isotherm models were employed to describe the adsorption data. The post-treated carbon polymer exhibits a greater specific surface of 16.6 m2/g. The maximum adsorption of methylene blue by cross-linked and post-treated β-CD adsorbents are 263 and 227 mg/g, respectively. The kinetics data fitted well into pseudo-first order model, indicating physical adsorption. The Boyd’s model showed that film diffusion may be the controlling mechanism. The equilibrium data of methylene blue adsorption for the two β-CD polymers obeyed Langmuir model. To conclude, β-CD is a promising adsorbent candidate for the treatment of dye wastewater.
期刊介绍:
The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.