{"title":"基于多尺度残差接受域的深度神经网络遥感图像着色","authors":"Jianan Feng, Qian Jiang, Xin Jin, Shin-Jye Lee, Shanshan Huang, Shao-qing Yao","doi":"10.3724/sp.j.1089.2021.18747","DOIUrl":null,"url":null,"abstract":"To solve the problems of mistaken coloring and color bleeding in the current colorization methods, an end-to-end deep neural network is proposed to achieve remote sensing image colorization. First, the multi-scale residual receptive filed net is introduced to extract the key features of source image. Second, a color information recovery network is con-structed by using U-Net, complex residual structure, attention mechanism, sequeeze-and-excitation and pixel-shuffle blocks to obtain color result. NWPU-RESISC45 dataset is chosen for model training and validation. Compared with other color methods, the PSNR value of the proposed method is increased by 6-10 dB on average and the SSIM value is increased by 0.05-0.11. In addition, the proposed method also achieves satisfactory color results on RSSCN7 and AID datasets.","PeriodicalId":52442,"journal":{"name":"计算机辅助设计与图形学学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Remote Sensing Image Colorization Based on Deep Neural Networks with Multi-Scale Residual Receptive Filed\",\"authors\":\"Jianan Feng, Qian Jiang, Xin Jin, Shin-Jye Lee, Shanshan Huang, Shao-qing Yao\",\"doi\":\"10.3724/sp.j.1089.2021.18747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the problems of mistaken coloring and color bleeding in the current colorization methods, an end-to-end deep neural network is proposed to achieve remote sensing image colorization. First, the multi-scale residual receptive filed net is introduced to extract the key features of source image. Second, a color information recovery network is con-structed by using U-Net, complex residual structure, attention mechanism, sequeeze-and-excitation and pixel-shuffle blocks to obtain color result. NWPU-RESISC45 dataset is chosen for model training and validation. Compared with other color methods, the PSNR value of the proposed method is increased by 6-10 dB on average and the SSIM value is increased by 0.05-0.11. In addition, the proposed method also achieves satisfactory color results on RSSCN7 and AID datasets.\",\"PeriodicalId\":52442,\"journal\":{\"name\":\"计算机辅助设计与图形学学报\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"计算机辅助设计与图形学学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.3724/sp.j.1089.2021.18747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"计算机辅助设计与图形学学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3724/sp.j.1089.2021.18747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Remote Sensing Image Colorization Based on Deep Neural Networks with Multi-Scale Residual Receptive Filed
To solve the problems of mistaken coloring and color bleeding in the current colorization methods, an end-to-end deep neural network is proposed to achieve remote sensing image colorization. First, the multi-scale residual receptive filed net is introduced to extract the key features of source image. Second, a color information recovery network is con-structed by using U-Net, complex residual structure, attention mechanism, sequeeze-and-excitation and pixel-shuffle blocks to obtain color result. NWPU-RESISC45 dataset is chosen for model training and validation. Compared with other color methods, the PSNR value of the proposed method is increased by 6-10 dB on average and the SSIM value is increased by 0.05-0.11. In addition, the proposed method also achieves satisfactory color results on RSSCN7 and AID datasets.