SentiML ++: SentiML情感注释方案的扩展

IF 1.4 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
M. S. Missen, Mickaël Coustaty, N. Salamat, V. B. Surya Prasath
{"title":"SentiML ++: SentiML情感注释方案的扩展","authors":"M. S. Missen, Mickaël Coustaty, N. Salamat, V. B. Surya Prasath","doi":"10.1080/13614568.2018.1448007","DOIUrl":null,"url":null,"abstract":"ABSTRACT The amount of opinionated data on the web has exponentially increased especially after the emergence of online social networks. To deal with these huge deluge of data, we need to have robust mechanisms that can help identify all aspects of opinion segment and support the automatic processing of opinion data. Recently, there have been a few developments made in this direction, and different sentiment annotation schemes have been proposed such as the SentiML, OpinionMiningML, and EmotionML. In this work, we propose SentiML++, an extension of SentiML with a focus on annotating opinions, and further answering aspects of the general question “who has what opinion about whom in which context?”. A detailed comparison with SentiML and other existing annotation schemes is also presented. The data collection annotated with SentiML has been annotated with SentiML++ and is available for download for further research purposes. Experiments with data collections annotated with SentiML and SentiML++ proves that SentiML++ is a significant and valuable addition to SentiML.","PeriodicalId":54386,"journal":{"name":"New Review of Hypermedia and Multimedia","volume":"24 1","pages":"28 - 43"},"PeriodicalIF":1.4000,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13614568.2018.1448007","citationCount":"4","resultStr":"{\"title\":\"SentiML ++: an extension of the SentiML sentiment annotation scheme\",\"authors\":\"M. S. Missen, Mickaël Coustaty, N. Salamat, V. B. Surya Prasath\",\"doi\":\"10.1080/13614568.2018.1448007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The amount of opinionated data on the web has exponentially increased especially after the emergence of online social networks. To deal with these huge deluge of data, we need to have robust mechanisms that can help identify all aspects of opinion segment and support the automatic processing of opinion data. Recently, there have been a few developments made in this direction, and different sentiment annotation schemes have been proposed such as the SentiML, OpinionMiningML, and EmotionML. In this work, we propose SentiML++, an extension of SentiML with a focus on annotating opinions, and further answering aspects of the general question “who has what opinion about whom in which context?”. A detailed comparison with SentiML and other existing annotation schemes is also presented. The data collection annotated with SentiML has been annotated with SentiML++ and is available for download for further research purposes. Experiments with data collections annotated with SentiML and SentiML++ proves that SentiML++ is a significant and valuable addition to SentiML.\",\"PeriodicalId\":54386,\"journal\":{\"name\":\"New Review of Hypermedia and Multimedia\",\"volume\":\"24 1\",\"pages\":\"28 - 43\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2018-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/13614568.2018.1448007\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Review of Hypermedia and Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/13614568.2018.1448007\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Review of Hypermedia and Multimedia","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/13614568.2018.1448007","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 4

摘要

网络上自以为是的数据量呈指数级增长,尤其是在在线社交网络出现之后。为了处理这些海量的数据,我们需要有强大的机制来帮助识别意见段的各个方面,并支持意见数据的自动处理。最近,在这个方向上取得了一些进展,并提出了不同的情感注释方案,如SentiML、OpinionMiningML和EmotionML。在这项工作中,我们提出了SentiML++,这是SentiML的扩展,重点是注释意见,并进一步回答“谁在什么上下文中对谁有什么意见?”这个一般性问题的各个方面。并与SentiML和其他现有标注方案进行了详细的比较。用SentiML注释的数据收集已经用SentiML++进行了注释,可以下载以供进一步研究。用SentiML和SentiML++注释的数据集合的实验证明,SentiML++是对SentiML的重要而有价值的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SentiML ++: an extension of the SentiML sentiment annotation scheme
ABSTRACT The amount of opinionated data on the web has exponentially increased especially after the emergence of online social networks. To deal with these huge deluge of data, we need to have robust mechanisms that can help identify all aspects of opinion segment and support the automatic processing of opinion data. Recently, there have been a few developments made in this direction, and different sentiment annotation schemes have been proposed such as the SentiML, OpinionMiningML, and EmotionML. In this work, we propose SentiML++, an extension of SentiML with a focus on annotating opinions, and further answering aspects of the general question “who has what opinion about whom in which context?”. A detailed comparison with SentiML and other existing annotation schemes is also presented. The data collection annotated with SentiML has been annotated with SentiML++ and is available for download for further research purposes. Experiments with data collections annotated with SentiML and SentiML++ proves that SentiML++ is a significant and valuable addition to SentiML.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Review of Hypermedia and Multimedia
New Review of Hypermedia and Multimedia COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.40
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: The New Review of Hypermedia and Multimedia (NRHM) is an interdisciplinary journal providing a focus for research covering practical and theoretical developments in hypermedia, hypertext, and interactive multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信