基于两个控制量子位的最优相位估计

IF 4.2 Q2 QUANTUM SCIENCE & TECHNOLOGY
Peyman Najafi, Pedro C. S. Costa, D. Berry
{"title":"基于两个控制量子位的最优相位估计","authors":"Peyman Najafi, Pedro C. S. Costa, D. Berry","doi":"10.1116/5.0147954","DOIUrl":null,"url":null,"abstract":"Phase estimation is used in many quantum algorithms, particularly in order to estimate energy eigenvalues for quantum systems. When using a single qubit as the probe (used to control the unitary we wish to estimate the eigenvalue of), it is not possible to measure the phase with a minimum mean-square error. In standard methods, there would be a logarithmic (in error) number of control qubits needed in order to achieve this minimum error. Here, we show how to perform this measurement using only two control qubits, thereby reducing the qubit requirements of the quantum algorithm. To achieve this task, we prepare the optimal control state one qubit at a time, at the same time as applying the controlled unitaries and inverse quantum Fourier transform. As each control qubit is measured, it is reset to |0⟩ then entangled with the other control qubit, so only two control qubits are needed.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimum phase estimation with two control qubits\",\"authors\":\"Peyman Najafi, Pedro C. S. Costa, D. Berry\",\"doi\":\"10.1116/5.0147954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase estimation is used in many quantum algorithms, particularly in order to estimate energy eigenvalues for quantum systems. When using a single qubit as the probe (used to control the unitary we wish to estimate the eigenvalue of), it is not possible to measure the phase with a minimum mean-square error. In standard methods, there would be a logarithmic (in error) number of control qubits needed in order to achieve this minimum error. Here, we show how to perform this measurement using only two control qubits, thereby reducing the qubit requirements of the quantum algorithm. To achieve this task, we prepare the optimal control state one qubit at a time, at the same time as applying the controlled unitaries and inverse quantum Fourier transform. As each control qubit is measured, it is reset to |0⟩ then entangled with the other control qubit, so only two control qubits are needed.\",\"PeriodicalId\":93525,\"journal\":{\"name\":\"AVS quantum science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AVS quantum science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/5.0147954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"QUANTUM SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVS quantum science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/5.0147954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

相位估计用于许多量子算法中,特别是为了估计量子系统的能量特征值。当使用单个量子位作为探针(用于控制我们希望估计其特征值的单位)时,不可能以最小均方误差测量相位。在标准方法中,为了达到这个最小误差,需要对数(误差)数量的控制量子位。在这里,我们展示了如何仅使用两个控制量子位执行此测量,从而减少了量子算法的量子位要求。为了实现这一任务,我们在一次一个量子位制备最优控制状态,同时应用受控酉元和反量子傅里叶变换。当每个控制量子位被测量时,它被重置为|0⟩,然后与另一个控制量子位纠缠,因此只需要两个控制量子位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimum phase estimation with two control qubits
Phase estimation is used in many quantum algorithms, particularly in order to estimate energy eigenvalues for quantum systems. When using a single qubit as the probe (used to control the unitary we wish to estimate the eigenvalue of), it is not possible to measure the phase with a minimum mean-square error. In standard methods, there would be a logarithmic (in error) number of control qubits needed in order to achieve this minimum error. Here, we show how to perform this measurement using only two control qubits, thereby reducing the qubit requirements of the quantum algorithm. To achieve this task, we prepare the optimal control state one qubit at a time, at the same time as applying the controlled unitaries and inverse quantum Fourier transform. As each control qubit is measured, it is reset to |0⟩ then entangled with the other control qubit, so only two control qubits are needed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信