钻孔颗粒增强复合材料表面粗糙度评价

IF 1.7 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
F. Ficici
{"title":"钻孔颗粒增强复合材料表面粗糙度评价","authors":"F. Ficici","doi":"10.1177/2633366X20937711","DOIUrl":null,"url":null,"abstract":"Aluminum matrix composite materials being used in different sectors including automobile, aerospace, defense, and medical and are currently displacing unreinforced materials with their superior mechanical properties. The metal removal process of drilling is widely used in many structural applications. This study experimentally investigates the drilling characteristics of silicon carbide (SiCp)-reinforced Al 7075 composites produced by stir casting method. Also, two different drill materials with high-speed steel (HSS) and titanium nitride (TiN)-coated HSS carry out in drilling operation. The effect of operational parameters such as cutting speed and feed rate and materials parameters such as weight fraction of reinforcement and cutting tools on the surface roughness of drilled holes were evaluated in the drilling operations. The results of the drilling test indicate that the feed rate and cutting speed have a very strong effect on the surface roughness of matrix alloy and composite materials. The surface roughness (Ra ) values increased with increasing the feed rate and decreased with increasing the cutting speed. Under 0.10 mm/rev and 20 m/min drilling conditions and using HSS drill, surface roughness values for matrix, 5% SiC-, 10% SiC-, and 15% SiC-reinforced composites, were obtained 2.57, 2.59, 2.61, and 2.64 µm, respectively; besides, using TiN-coated HSS drill, surface roughness values were obtained 1.60, 1.63, 1.64, and 1.66 µm, respectively. An increase in the weight fraction of the abrasive SiC particle resulted in a very crucial deterioration quality of the drilled hole. TiN-coated HSS drills better performance exhibits than uncoated HSS drills for all the drilling operations about surface roughness properties. Short chip formations observed both the matrix alloy and the composite materials for two different drills in the drilling operations.","PeriodicalId":55551,"journal":{"name":"Advanced Composites Letters","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2633366X20937711","citationCount":"8","resultStr":"{\"title\":\"Evaluation of surface roughness in drilling particle-reinforced composites\",\"authors\":\"F. Ficici\",\"doi\":\"10.1177/2633366X20937711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aluminum matrix composite materials being used in different sectors including automobile, aerospace, defense, and medical and are currently displacing unreinforced materials with their superior mechanical properties. The metal removal process of drilling is widely used in many structural applications. This study experimentally investigates the drilling characteristics of silicon carbide (SiCp)-reinforced Al 7075 composites produced by stir casting method. Also, two different drill materials with high-speed steel (HSS) and titanium nitride (TiN)-coated HSS carry out in drilling operation. The effect of operational parameters such as cutting speed and feed rate and materials parameters such as weight fraction of reinforcement and cutting tools on the surface roughness of drilled holes were evaluated in the drilling operations. The results of the drilling test indicate that the feed rate and cutting speed have a very strong effect on the surface roughness of matrix alloy and composite materials. The surface roughness (Ra ) values increased with increasing the feed rate and decreased with increasing the cutting speed. Under 0.10 mm/rev and 20 m/min drilling conditions and using HSS drill, surface roughness values for matrix, 5% SiC-, 10% SiC-, and 15% SiC-reinforced composites, were obtained 2.57, 2.59, 2.61, and 2.64 µm, respectively; besides, using TiN-coated HSS drill, surface roughness values were obtained 1.60, 1.63, 1.64, and 1.66 µm, respectively. An increase in the weight fraction of the abrasive SiC particle resulted in a very crucial deterioration quality of the drilled hole. TiN-coated HSS drills better performance exhibits than uncoated HSS drills for all the drilling operations about surface roughness properties. Short chip formations observed both the matrix alloy and the composite materials for two different drills in the drilling operations.\",\"PeriodicalId\":55551,\"journal\":{\"name\":\"Advanced Composites Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/2633366X20937711\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2633366X20937711\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2633366X20937711","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 8

摘要

铝基复合材料被用于汽车、航空航天、国防和医疗等不同领域,目前正以其优越的机械性能取代非增强材料。钻孔金属去除工艺在许多结构应用中得到了广泛的应用。实验研究了用搅拌铸造法制备的碳化硅(SiCp)增强Al 7075复合材料的钻削性能。同时,采用高速钢(HSS)和氮化钛(TiN)涂层高速钢(HSS)两种不同的钻头材料进行钻井作业。在钻孔作业中,评价了切削速度、进给量等工艺参数和增强剂重量分数、刀具等材料参数对钻孔表面粗糙度的影响。钻削试验结果表明,进给速度和切削速度对基体合金和复合材料的表面粗糙度有很强的影响。表面粗糙度Ra值随进给量的增加而增大,随切削速度的增加而减小。在0.10 mm/rev和20 m/min的钻孔条件下,使用HSS钻头,5% SiC、10% SiC和15% SiC增强复合材料的表面粗糙度值分别为2.57、2.59、2.61和2.64µm;镀锡高速钢钻头的表面粗糙度值分别为1.60、1.63、1.64、1.66µm。磨料SiC颗粒重量分数的增加会导致钻孔质量的严重恶化。镀锡高速钢钻头的表面粗糙度均优于未镀锡高速钢钻头。在两种不同钻头的短切屑地层中,均观察到基体合金和复合材料的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of surface roughness in drilling particle-reinforced composites
Aluminum matrix composite materials being used in different sectors including automobile, aerospace, defense, and medical and are currently displacing unreinforced materials with their superior mechanical properties. The metal removal process of drilling is widely used in many structural applications. This study experimentally investigates the drilling characteristics of silicon carbide (SiCp)-reinforced Al 7075 composites produced by stir casting method. Also, two different drill materials with high-speed steel (HSS) and titanium nitride (TiN)-coated HSS carry out in drilling operation. The effect of operational parameters such as cutting speed and feed rate and materials parameters such as weight fraction of reinforcement and cutting tools on the surface roughness of drilled holes were evaluated in the drilling operations. The results of the drilling test indicate that the feed rate and cutting speed have a very strong effect on the surface roughness of matrix alloy and composite materials. The surface roughness (Ra ) values increased with increasing the feed rate and decreased with increasing the cutting speed. Under 0.10 mm/rev and 20 m/min drilling conditions and using HSS drill, surface roughness values for matrix, 5% SiC-, 10% SiC-, and 15% SiC-reinforced composites, were obtained 2.57, 2.59, 2.61, and 2.64 µm, respectively; besides, using TiN-coated HSS drill, surface roughness values were obtained 1.60, 1.63, 1.64, and 1.66 µm, respectively. An increase in the weight fraction of the abrasive SiC particle resulted in a very crucial deterioration quality of the drilled hole. TiN-coated HSS drills better performance exhibits than uncoated HSS drills for all the drilling operations about surface roughness properties. Short chip formations observed both the matrix alloy and the composite materials for two different drills in the drilling operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Composites Letters
Advanced Composites Letters 工程技术-材料科学:复合
自引率
0.00%
发文量
0
审稿时长
4.2 months
期刊介绍: Advanced Composites Letters is a peer reviewed, open access journal publishing research which focuses on the field of science and engineering of advanced composite materials or structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信