{"title":"非局部逆空间矩阵非线性Schrödinger方程的逆散射变换","authors":"W. Ma, Yehui Huang, Fudong Wang","doi":"10.1017/s0956792521000334","DOIUrl":null,"url":null,"abstract":"The aim of the paper is to explore non-local reverse-space matrix non-linear Schrödinger equations and their inverse scattering transforms. Riemann–Hilbert problems are formulated to analyse the inverse scattering problems, and the Sokhotski–Plemelj formula is used to determine Gelfand–Levitan–Marchenko-type integral equations for generalised matrix Jost solutions. Soliton solutions are constructed through the reflectionless transforms associated with poles of the Riemann–Hilbert problems.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":"1 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Inverse scattering transforms for non-local reverse-space matrix non-linear Schrödinger equations\",\"authors\":\"W. Ma, Yehui Huang, Fudong Wang\",\"doi\":\"10.1017/s0956792521000334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the paper is to explore non-local reverse-space matrix non-linear Schrödinger equations and their inverse scattering transforms. Riemann–Hilbert problems are formulated to analyse the inverse scattering problems, and the Sokhotski–Plemelj formula is used to determine Gelfand–Levitan–Marchenko-type integral equations for generalised matrix Jost solutions. Soliton solutions are constructed through the reflectionless transforms associated with poles of the Riemann–Hilbert problems.\",\"PeriodicalId\":51046,\"journal\":{\"name\":\"European Journal of Applied Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0956792521000334\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0956792521000334","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Inverse scattering transforms for non-local reverse-space matrix non-linear Schrödinger equations
The aim of the paper is to explore non-local reverse-space matrix non-linear Schrödinger equations and their inverse scattering transforms. Riemann–Hilbert problems are formulated to analyse the inverse scattering problems, and the Sokhotski–Plemelj formula is used to determine Gelfand–Levitan–Marchenko-type integral equations for generalised matrix Jost solutions. Soliton solutions are constructed through the reflectionless transforms associated with poles of the Riemann–Hilbert problems.
期刊介绍:
Since 2008 EJAM surveys have been expanded to cover Applied and Industrial Mathematics. Coverage of the journal has been strengthened in probabilistic applications, while still focusing on those areas of applied mathematics inspired by real-world applications, and at the same time fostering the development of theoretical methods with a broad range of applicability. Survey papers contain reviews of emerging areas of mathematics, either in core areas or with relevance to users in industry and other disciplines. Research papers may be in any area of applied mathematics, with special emphasis on new mathematical ideas, relevant to modelling and analysis in modern science and technology, and the development of interesting mathematical methods of wide applicability.