关于Bougerol恒等式在法律中的二维扩张

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
Yuu Hariya, Yohei Matsumura
{"title":"关于Bougerol恒等式在法律中的二维扩张","authors":"Yuu Hariya, Yohei Matsumura","doi":"10.1214/23-ECP510","DOIUrl":null,"url":null,"abstract":"Let B = { B t } t ≥ 0 be a one-dimensional standard Brownian motion and denote by A t , t ≥ 0, the quadratic variation of e B t , t ≥ 0. The celebrated Bougerol’s identity in law (1983) asserts that, if β = { β t } t ≥ 0 is another Brownian motion independent of B , then β A t has the same law as sinh B t for every fixed t > 0. Bertoin, Dufresne and Yor (2013) obtained a two-dimensional extension of the identity involving as the second coordinates the local times of B and β at level zero. In this paper, we present a generalization of their extension in a situation that the levels of those local times are not restricted to zero. Our argument provides a short elementary proof of the original extension and sheds new light on that subtle identity.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On two-dimensional extensions of Bougerol’s identity in law\",\"authors\":\"Yuu Hariya, Yohei Matsumura\",\"doi\":\"10.1214/23-ECP510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let B = { B t } t ≥ 0 be a one-dimensional standard Brownian motion and denote by A t , t ≥ 0, the quadratic variation of e B t , t ≥ 0. The celebrated Bougerol’s identity in law (1983) asserts that, if β = { β t } t ≥ 0 is another Brownian motion independent of B , then β A t has the same law as sinh B t for every fixed t > 0. Bertoin, Dufresne and Yor (2013) obtained a two-dimensional extension of the identity involving as the second coordinates the local times of B and β at level zero. In this paper, we present a generalization of their extension in a situation that the levels of those local times are not restricted to zero. Our argument provides a short elementary proof of the original extension and sheds new light on that subtle identity.\",\"PeriodicalId\":50543,\"journal\":{\"name\":\"Electronic Communications in Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Communications in Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ECP510\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ECP510","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

设B={B t}t≥0是一维标准布朗运动,并用a t,t≥0表示e B t,t的二次变分。著名的Bougerol定律恒等式(1983)断言,如果β={βt}t≥0是另一个独立于B的布朗运动,那么对于每个固定t>0,β-t与sinh bt具有相同的定律。Bertoin、Dufresne和Yor(2013)获得了恒等式的二维扩展,涉及B和β在零级的局部时间作为第二坐标。在本文中,我们在这些局部时间的能级不限于零的情况下,给出了它们的推广。我们的论点为最初的扩展提供了一个简短的基本证明,并为这个微妙的身份提供了新的线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On two-dimensional extensions of Bougerol’s identity in law
Let B = { B t } t ≥ 0 be a one-dimensional standard Brownian motion and denote by A t , t ≥ 0, the quadratic variation of e B t , t ≥ 0. The celebrated Bougerol’s identity in law (1983) asserts that, if β = { β t } t ≥ 0 is another Brownian motion independent of B , then β A t has the same law as sinh B t for every fixed t > 0. Bertoin, Dufresne and Yor (2013) obtained a two-dimensional extension of the identity involving as the second coordinates the local times of B and β at level zero. In this paper, we present a generalization of their extension in a situation that the levels of those local times are not restricted to zero. Our argument provides a short elementary proof of the original extension and sheds new light on that subtle identity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Communications in Probability
Electronic Communications in Probability 工程技术-统计学与概率论
CiteScore
1.00
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信